fD-A140 212 HDDELL ING WITH_ INTEGER VﬂRl RBLES(U) RIR FORL‘E INST OF 172
! WRIGHT-PATTERSON AFB OH K LOWE 1984

RFIT/CI/NR/GN -4D
UNCLASSIFIED F/G 12/1 NL




%
AR
[/

4

a
-

N
- S
AAY

y

A " . ara ——y
SRR AR A A AL MASOA AL ST LK

N

o
RE

I
I

FPEFEEER

EFEE

(43

F

Fe
N
o

i
s :
i e

N
O

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

PRI

AL TE S SR K Y R
M P DA A LR




ISASL LR LA L LN KO RE QTG aN 26 1 R o¢ A2 AT AT AR AT 4 Wy T e T I (T AT I T TR LA AL AR M A

P - PR . P, R, - Cha e chi b Avdm— S e e ——

e - ———

~

- UNCIASS /‘
SECURITY CLASSIFICATION OF THIS PAGE (When Dntl‘Enloud)‘; ?/
READ NSTRUCTIONS
REPORT DOCUMENTATION PAGE (? /) pereEAP NSTRUCTIONS
1. REPORT NUMBER 2. GOVTY ACCESSION NUJ] 3. RECIPIENT'S CATALOS NUMBER
AFIT/CI/NR 84-4D
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
el Modelling With Integer Variables THE3}¥3/DISSERTATION
6. PERFORMING OG. REPORT NUMBER 1
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(SY) ‘

James K. Lowe

|
q,‘ 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS
po AFIT STUDENT AT:  Georgia Institute of
Technology
< 1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
o AFIT/NR 1984
WPAFB OH 45433 13. NUMBER OF PAGES
<< 169
T4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) | 15. SECURITY CLASS. (of this report)
UNCLASS
1Sa. DECL ASSIFICATION. DOWNGRADING
SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
r‘ﬁ f :‘ *
i -,»"'l 1 i "‘d
X Fa bV ECTE
F-‘: 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) ',' ..‘\‘” '

b 7:1;? _APR18184 . ¥
~ w
l?-p:' 4 L \_ y —
s 8. SPPLEMENTARY NOTES L=V ‘

22 2=|APPROVED FOR PUBLIC RELEASE: FR 190- LY@ E. WOLAVER
- OVED FOR PUBLIC RELEASE: IAW AFR 190-1f De¥n for Resecrch and
- Professional Development
. S h ol 1Y AFIT, Wright-Patterson AFBJOP
“~7 19. KEY WOROS (Continue on reverse side if necessary and identity by block number)
- tad
N
NI
;i
F::' 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
P
P:.
¥ ATTACHED
{
”-
’
.
g
.\;.
Y, DD .5y 1473  eoimion oF 1 nov 68 s casoLET UNCLASS
% 8 4 0 4 1 6 b 3557CUR|TV CLASSIFICATION OF THIS PAGE (When Data Entered)




LI I S R I S R o

MODELLING WITH INTEGER VARIABLES

A DISSERTATION
by

James Kenneth Lowe

Presented to
The Faculty of the Division of Graduate Studies

In Partial Fulfillment
of the Requirements for the Degree
Ph.D. in the College of Management

Jemans A Far ' /’__J
| . . .

==
—
Georgia Institute of Technology b
February 1984 ;

. - e e ..:-. ,;.-. -.'J':'.'.‘.'..." .
A BEDRER'S YA VR LA S A AL NCAEA. o %, PR ISl AL ¥y




o ' ‘A
i~ . *c‘l
> P X LA

A

o

N
.

Abstract
Modelling With Integer Variables
Capt. James K. Lowe, USAF
Ph.D. Management, 1984
Directed by Dr. R. G. Jeroslow
Georgia Institute of Technology
\3/ 169 pages
Representing nonlinear optimization problems as mixed-integer

P

programs has largely been considered as; 1) an “"art™ with few unresolved
theoretical issues, and 2) a fairly standard ;;;;processing"9::utine when
combined with several ad hoc modelling improvements which have evolved
through computational experience. The more common avenue of research in
mixed~integer programming has focused upon finding improved algorithms
and heuristics to solve the problems, asguming a standard mixed-integer
representation existsf//;;ﬁfhis thesi;:’;:\takeaa “:;ep blckwards"7:;d
re-examinesthe theoretical issues and subtleties involved in representing
problems with mixed-integer representations. . —
As a result of our theoretical investigation, necessary and
sufficient conditions are given which guarantee the existence of a mixed
integer representation for a given problem. The conditions explain some
of the subtleties surrounding well-known problems such as the fixed-
charge problem, which requires an upper bound on the variable. Our
results, always in the rational field, concern the representability of a

finite union of sets. Many results extend Rockafellar's finite basis

theorems.
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In our theoretical investigation, we employ a system of
inequalities derived from disjunctive programming to help prove the
existence of a mixed-integer representation for a finite union of
polyhedra whose recession directions satisfy certain criteria. Wwhile the
system of inequalities is not new, its use as a mixed-integer program
representation is new. Another mixed-integer representation is presented
vhich utilizes the "extreme points" of the individual polyhedra (when
representing a finite union of polyhedra). Both representations are
automatic, esasy to use, and both have the property of sharpness.
Sharpness concerns the amount of information lost as the integer
variables are relaxed to the continuous rational field.

Whether a particular representation is sharp or not often
determines whether a problem is solvable within minutes of computation or
remains unsolved after hours of computation. Our automatic representa-
tions are always sharp, they often preserve their sharpness after
variable arbitration (as in a branch-and-bound setting), and have shown
tremendous efficiency and time savings for the problems and modellings

explored.
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CHAPTER 1
INTRODUCTION

A widely accepted view in integer programming research is that
progress, in utilizing (mixed-) integer formulations to solve real-world
problems, will rely primarily on algorithm advances (for general and
special structures) and clever coding tricks. In this view, we are
perceived as already knowing how to represent s real-world problem with
integer variables; those simple “formulation techniques" appear early in
the subject and by now are widespread in the masters’-level and even
undergraduate-level textbooks. (see e.g. [14], [42]) However, since in
the 1970's, the experience of practitioners indicate that some major
issues of formulation have been overlooked. For example, Geoffrion and
Graves [16) solve a large scale multicommodity distribution problem which
includes fixed charges. In their modelling, they notice that to
economize on the number of constraints, a standard linear programming
technique, results in more iterations for convergence to the optimal
solution, 1In ;nothet example, Williams [41] finds a similar advantage of
disaggregating constraints for logical system problems, which he mcdels
as generslized set-covering problems. Both of the above references
indicate a computational need to reformulate MIP representations before

attempting to solve them.
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One of the earliest integer models is the Fixed-Charge problem in 1

which a fixed cost is incurred (the objective is to minimize costs) when

PAXKS  ASRERE oAt

a certain activity level is non-zero (see Dantzig [10]). This very

-
e

common problem can be modelled as a mixed-integer program (MIP), provided
that an explicit upper bound is known for the variable which “triggers"
the fixed cost. A seemingly similar problem is the Fixed-Benefit
problem, in which a benefit (rebate) is received, rather than a cost
incurred when the variable is nonzero. This problem cannot be
represénted as a MIP even with a known upper bound for the "trigger"
variable, As we shall see in Chapter 2, the Fixed-Benefit case requires
an explicit minimum usage level which must be met before the benefit is
received, if it is to be represented via (bounded) integer variables.

In contrasting the fixed-charge and fixed-benefit problems, we
have illustrated one of the subtleties of modelling with integer
variables that we will treat in this thesis. Several other aspects of
integer modelling will be discussed, and we present here (we hope
convincing) evidence of our two theses, namely that: 1) There are
substantial advantages to using "better" integer models; and 2) The
study of integer modelling has many aspects which are amenable to exact,
analytic development.

In the late sixties, and early seventies, Benichou, et al. [6],
Land and Doig, Beale, and others implement improved Branch-and-Bound
based commercial mixed-integer programming systems capable of solving
many practical industrial MIPs [41]. These algcri;hmic advances provide

opportunities ‘o conduct computational experiments to compare various
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ad hoc modellings and reformulations. The results of these experiments,
notably those of H. P. Williams, and Geoffrion and Graves (who used a
specially-designed enumerative code) motivate others to re-examine MIP
modelling issues for computational improvements.

Williams {&41]) finds, in comparing modellings, that "the superior

formulation is always the one which is “tighter” in & continuous sense."

By "tighter," he means the continuous optimum (integrality relaxed) is
closer to the integer optimum. Williams experiments involve integer
variables in both flow problems and logic problems. His ad hoc methods
of problem reformulation involve coefficient reduction and disaggregation
of constraints.

Geoffrion and Graves [16] model a multicommodity distribution
system and provide a "lesson on Model Representatidn.“ (see Section 5 of
[16].) 1In their flow problem, they provide computational results
favoring a modelling which disaggregates constraints. They realize that
the disaggregation, in the relaxed case, provides the convex hull of the
original integer feasible solutions. They also note that the price of
the tighter bound and reduction in Branch-and-Bound tree branching is the
additional time required to solve the larger LP relaxation at each node
of the Branch-and-Bound tree. Based upon their computational and
theoretical results, they "suggest a general methodology for discovering
improved model representations: for various subsets of contraints
involving some of the integer variables, try to explicitly derive the

convex hull of the integer feasible points.” Much of our work in this
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thesis is in effect a partial reply to their request for such a

. methodology.

Rardin and Choe [40] disaggregate relevant constraints of a fixed-

charge multicommodity network flow problem by way of an arc-node

A IR

representation which explictly defines each possible path from each

E? source i, to all sinks j. While improving the value of the LP !
5: relaxation, this technique often greatly increases the size of the

?J- resulting MIP. They provide computational results, supporting the

Es effectiveness of the improved LP relaxations.

Oley and Sjoquist [38], Crowder, Johnson, and Padberg {9],

Johnson, Kostreva, and Suhl [28] automate the process of coefficient

reduction and constraint disaggregation. Oley and Sjoquist implement

their reformulation techniques in CDC's APEX IV math programming system.
They employ a pruning technique similar to that found in Chapter V of
this thesis, and a "big M" reduction method similar to that employed in
Chapter 11 of this thesis.

Johnson, et al. [28) employ similar reductions and disaggregations
in a large scale planning scenario. 1In their problem, they encounter
fixed-charges, either/or type constraints, and special ordered set (SOS)
variables. They do not disaggregate the either/or type constraints as in
Chapter II of this thesis.

The reformulation sources mentioned above appeal to the
“computational effectiveness" justification of their techniques. While
their results are extremely useful, they do not systematically address

the issue of existence of a MIP modelling for a given problem, nor
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techniques for providing modellings with tight linear relaxations, nor

the "hereditary" effects of various formulations as branching proceeds in

o L N T TRt

‘.

a branch-and-bound procedure.
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As we shall see later in this thesis, improvements in modelling

-

rd

techniques derive from what begins as theoretical investigations.

In the
ey
2ﬁ : mid seventies, Ibaraki [21], and Meyer [33], [34), [35] launch a
;t systematic study of modelling problems as MIPs. In accounting for thelr
!’ ' earlier results on the existence of modellings, our proofs in Chapter II
P“J:' M
;:; will amount to formulation techniques which have, and hereditarily

preserve, tight linear relaxations. Our results are either derived from,

or motivated by disjunctive programming. In later chapters of the

thesis, we report experiments on the new formulation techniques.

As in our approach, Balas [1] alsc expresses the discrete

optimization problem as the intersection of unions of polyhedra. In that

paper, he introduces operations to reduce the number of intersections,

which strengthens the relaxations. In this manner one creates a

hierarchy of relaxations ranging from the original LP relaxation to the

exact convex hull of integer feasidle points. This hierarchy of

relaxations in some respects goes beyond the theoretical work reported
here, although it is similar to the lattice of co-propositions in [24]
that contains several hierarchies.

In Chapter II of this thesis, we develop necessary and sufficient
conditions concerning when a union of polyhedra is MIP representable. In

doing so, we develop an automatic MIP representation for any bounded-MIP

representable union of polyhedra.

SRR .--\--._:_.:..';‘-.
e e e e T e e N e e TR T T T UL VLS LS |
e e w e R T v e R S A R TP W ,L‘“xg.‘\\‘\
. - .. e L m e e AT et e e e e AR N AR, WA P v P
e W vl PRCAKSE RN .\;ﬁ__ '.'%J‘:-._.-'- "‘:‘("n.‘:&':‘::ﬁ.‘;xw———‘k P -




L ¢
%

PO

]
3
o

> 2 l. y
PR SR

.

S O Tt D T TE L I
LRI R RS P SR RUPL ECENICR RN L IO, WA G W W e W |

pop S Jie it Tl R e o
K -, -

'''''

We then focus upon the sharpness of this MIP representation.

Sharpness holds when the LP relaxation of a MIP modelling is exactly the

convex hull of integer feasible solutions. Our automatic MIP

representation is always sharp. Typically, it is obtained for a subpart

of the whole mixed-integer program, such as a fixed-charge, piecewise~
linear function, either/or constraints, etc. This part must be then
"linked" intoc the main program, and typically the result is not sharp for
the whole program. The issues raised by the "linkage" process are iu
part the substance of Balas' hierarchy in [1].

In Chapter III we review bounded-MIP representability and conduct
two experiments comparing our "sharp" representations to common
representations found in current literature use. Experiments are
necessary since the SHARP representation (which subsumes the
disaggregation techniques employed by others) often, but not always,
results in much larger p;oblems in terms of both constraints and
continuocus variables.

The first experiment compares our larger sharp MIP modelling of
“either/or" type constraints with a more concise, non-sharp modelling
found in many current articles and textbooks ([14) for instance). The
dramatic lack of sharpness of the common modelling proves to be its major
defect, as the sharp modelling performs faster in terms of cpu seconds
and more efficiently in terms of Branch-and-Bound nodes solved (many
instances show an improvement of over 100%, increasing with problem

size). From our results, only in very small instances did the “non-
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sharp” model perform faster than our "sharp" representation. As others

have found using ad hoc techniques, we find "sharpness’ as a key

-opm— v -

ingredient to successful integer programs.
The second experiment in Chapter III, tests whether it is

computationally favorable to disaggregate a non-linear function into

§ WS SR

g “"easier" components; model each component individually; end then "link"
= the models together by termwise addition in the cbjective function before
. solving the final MIP. We test this aspect of modelling linkage cn &

piecewise-linear function with fixed-charges, The results favor the
modelling of the entire function, even when the "linked" modelling parts
are modelled using our sharp modelling.

Besides testing modelling linkage, this experiment also provides

evidence favoring "hereditarily" sharp models. Unless some variable co-

ordination is performed upon the linked models, they rarely will be
hereditarily sharp. Thus, once the Branch-and-Bound algorithm begins to
arbitrate variables, the modelling loses it sharpness, resulting in many
more branch-and-bound nodes.

In Chapter IV we provide computational support of a common
conjecture that the proximity of the convex hull of the integer feasible
solutions to the set of integer feasible solutions is a guide towards
problem difficulty. For this experiment, we use the Fixed-Charge, and

Fixed-Benefit problems mentioned earlier. The Fixed-Charge problem is a

very well-known difficult mixed-integer problem. On the other hand, it

turns out that the Fixed-Benefit problem is relatively easy to sclve as a
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MIP. The Fixed-Charge problem usually has a large gap between the two

sets mentioned above, while the Fixed-Benefit problem with low usage

L2

levels (as common in practice) has a much smaller, nearly

7
LN

L 2,

indistinguishable difference between the set of integer feasible points

A

and its corresponding convex hull, Our computational results support the

ig stated conjecture, as the Fixed-Charge problem is much more difficult

331 than the Fixed-Benefit problem.

4 In Chapter V, we include two experiments involving the modelling
::\ of propositional logic problems as mixed-integer programs. We find these
"z;i problems extremely easy to solve using elementary modelling techniques

A

that have been standard since the 1960's. Also, we can show an advantage
of our modelling techniques over the standard ones.

In summary, we have not only developed theoretical conditions
concerning the existence of MIP representations, but have, in doing so,
developed an automatic modelling for every bounded-MIP representable
problem instance. The modelling developed is always sharp, a property
which we, and others, have found to greatly improve computational
performance in a Branch-and-Bound mixed-integer programming system. We
provide several experiments to test various concepts and properties of
our gutomatic modellings, and MIP modellings in general. We find
Sharpness and hereditary sharpness as essential properties for successful
model building. The fact that our modelling is completely automatic, and

slways sharp, greatly enhances its use as a modelling technique.
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CHAPTER 11

MODELLING WITH INTEGER VARIABLES

Introduction

The interest in modelling practiial and mathematical problems as
integer and mixed-integer programs begins with a paper by Dantzig [4].
Since that paper, many "standard problem formulations' are routinely

available in elementary textbooks. However, not until the more recent

work of Meyer ([9}, {10} , [11) has there been thorough explorationm, or,

perhaps, even agwareness, of the "limits" of integer modelling. Our aim
in this chapter is to elucidate some of the subtleties of integer
modelling.

For exsmple, the fixed-charged problem can be modelled without a
minimum usage constraint. On the other hand, the "fixed-benefit" problem
must contain a minimum usage stipulation (which must be met before the
benefit is received) before it can be modelled as an integer problem.

Our results explain why this is so.

In section 1 of this chapter, we find that, for bounded sets, or
functions defined on bounded domains (Lemma 2.1.2), the subtleties are
neither very complex, nor restrictive, However, for a few unbounded sets
the restrictions are so severe that, unless the unboundedness can be
removed, one would naturally seek a different mathematical formulation of

the sets. For example, many unbounded functions can be modelled as
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generalized linear complementarity problems, which have no integer \

modelling (the set {x.y) > 0 | x*y = 0} is one such; see Theorem 2.1.7).
Even with the unboundedness removed, it is important to know that

a bound nust be used. This kind of information occurred in Meyer's

earliest studies of integer modelling [9] in comnection with the fixed-

charge problem (which is representable only in its bounded form, when

- rational data are stipulated). This choice of a suitable bound can be 2

major issue in algorithmic implementation.

In section 1, we develop basic definitions and many corollaries

;E _ which lead to the heart of our investigations into set representability.
Theorem 2.1.7 describes necessary and sufficient conditions for the union
of representable sets to be MIP-representable. In section 2, we explore
Meyer's concept of bounded representability, and develop necessary and
sufficient conditions for bovunded MIP-representability (Theorem 2.2.1).
For bounded representable sets, our results guarantee one Tepresentation
in which all integer variables are binary variables; furthermore, these
binary varisbles occur in a common set-partitioning conmstraint.

We then focus upon the implementation of MIP-representations, and
ask how "accurate" the representations are after the integer variables
are "relaxed" to continuous (rational) variables, as in branch-and-bound
algorithms (section 3). We easily show that the best possible relaxed
MIP-representation contains the convex hull of the original set. When
the specific MIP-representation is exactly the convex hull, it is called
a "sharp" representation. We provide sharp representations for many

models; most representations in common use are sharp.
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In our last section of this chapter (section 4), we show that

) F!
s .

}: Meyer's bounded-MIP representability Theorems (9] are specific cases of
)

ﬁé our Theorem 2.1.7 when all variables are restricted to the rational

i field. We then apply a linear inequality MIP-representation for

§E§ polyhedra developed in section 1 to an example representation used by

Q;E Beale [3], and show that the two can be used interchangeably and that

both are "sharp" representations. Moreover, it typically occurs, when we
turn our representability techniques to problems treated earlier, that we
obtain the most efficient (fewest constraint) linear relaxation, even
while our relaxation is best possible (i.e. "sharp"). To do so may

require noting some algebraic simplifications for the specific problem,

but that is all. Our problem formulations are either derived from or

motivated by disjunctive programming [1], [7].

While Meyer's theory permits representations which involve

irrational data, we have restricted ourselves to rational represeatations

only. This appears to cover sll that is of practical interest, and so

et -ty s

(3

cur results are stated for the rational field only. 1In some cases, the

a0

‘s s

results extend to the real field, but such issues can be addressed later

< ""

.

if they seem of interest.

Throughout this thesis, we denote the convex span respectively the
closure of set S as conv(S) respectively c1(S), and clconv(S) is the
closure of conv(S) [12). Similarily cone (S) denotes the convex cone

generated by S. The convex span and cone operations are taken only with

rational multipliers.
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We assume that the reader is familiar with the intended use of
MIP-representability in problem formulatiors, as illustrated in Meyer's
papers.

Section 1: Representability of the Finite Union of Representable Sets

We define a set S £Q (where Q denotes the rationals) as MIP-

representable if there are rational matrices A AZ’ A3, and vector b

10
with the property that: x € S, if and only if, for some u, v > 0, with

u integer, we have

X+ Au+AveEDb, (2.1.1)

A 2 3

We note that our definition extends to the case where x is constrained to

be integer. I.e., let x = (x _,..., xn) and let I be any subset of

1

{1 ,..., n}; then if S is MIP-representable so is the set {x ¢ Six.1 €2

(integers) for all i € I} (this is an easy exercise)., An extension of
our definition of MIP-representation is to functions: f is MIP-
representable if the set epi(f) is; where epi(f) = {(z,x)| z > f(x) and
f(x) is defined} denotes the epigraph of f. We also note that f has a
rational MIMM on T in Meyer's sense [10] and only if f is MIP-
representable in the above sense.

Our first theorem is an extension of the finite basis theorem for
polyhedra (Rockafellar [12]).

Theorem 2.1.1

Suppose that S # § is MIP representable. There are constants a,

.o . .
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u b > 0 such that for all integers p > 1, sa+bp + 0 and
o
= i
T 5= Spupp ¥ PMs (2.1.2)
l\i..'
}ﬂf; where
L
§ ={xes| £ | x.| <a}, and (2.1.3)
> Q : 1
L i=}
n
M= {x¢e2z | for some u, v » 0, with u, v integer, (2.1.4)
A X + Au+ = .
<t 2u A3v 0}
Proof
The containment S E?sa+bp + pM is immediate once we show that
Sa+bp # 0. 1In fact, if x € S and x' € M then by a direct computation,
x + px' € S.
We note that the nonempty set P, defined as
P= {(x,u,v)] Ax + Au+ A= b; u, v » 0} (2.1.5)
is a polyhedron. Therefore, from the finite basis theorem, there are
. e . .. . t t t .
disjoint finite sets J and K and points (x , u , v ) of P for t € K with
P = conv({(xJ, uJ, v)) | 5 eJD) + (2.1.6)

cone(((xk, uk. vk) | k e KD,
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; . j k ° o
We define a° = maxIx™), and b= I ix 8, and a = max{a”,1x 1} for x ¢ §
k ek

»
.

.'- PP S

EE: (Note, Ixt = |x |+|x,]| toootx | if x = (X5 X, 4eeey x )). Since b >0
~ 0 .
QA for p » 1 we have x ¢ sa+pb' Thus sa+bp # § and we now must establish
li i e .

o the containment S ;sa#bp + pM

53 o kK k k| .

N We may assume in what follows, that (x , u , v ) is an integer

14

-

vector for k € K (recall that Al’ Az, A3, b are rational). 1In
k
particular, x ¢ M for k € K.

Let x € 5. Then for some u, v > 0 with u integer, we have

(x,u,v) € P, Therefore there is a solution to

I3 .

(x,u,v) = ¢ Aj(xj, uJ, vh + ¢ % p(xk, uk, vk), (2.1.7)
jed k eK

l= T XA ;X 20,3€eJd, t 0, k ¢ K.
jes ] K

Let 9 denote the integer part of T

so that Te =9 * fk’ fk <1, and 9 fk > 0. Define

and let fk be the fractional part,

j ) k k k
(x°, u, v?) = I A-(xJ, uJ, vl + < fkp(x y U, V) (2.1.8a)

jes d kek
* * % k k k
(x ,u,v)=21 g pP(x , u, v). From (2.1.8a), (2.1.8b)
k ek

* *
$0 we have x = x”“ + x . We must show that x* ¢ sa*bp and x ¢ pM.

* % % *
Since (x,u,v) = (x”, u”, v°) + (x , u, v ) and u and u are

TS AP & G G
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L4

integer vectors, u” is an integer vector. From (2.1.8a), (x~*, u’,v*) ¢

P. Hence x”“ € S. Also trom (2.1.5), and (2.1.8a),

k - .
Ix°1 € a“ + p kzkf Ix | € a° +pb. Thus x” € sa+bP‘

‘ *
is integer for k € K, we have x € pM from (1.8b).

. k
Since x € M and 9

Q.E.D.
We note that 2.1.1 defines any representable set S in terms of a
bounded part (sa+bp) and a discrete unbounded part (pM) as in the finite

basis theorem for polyhedra. For @ € Q, sa is MIP-representable; hence

S is representable. 1In addition, M is an integral monoid with a

a+bp

finite basis (see Jeroslow [8]).

Corollary 2.1.2

1f § is both bounded and MIP-representable, § is a finite union cof

polytopes.

Proof

It suffices to show that a bound can be placed on the vector u
occuring in the representation.

Assume that x € S, From the proof of Theorem 2.1.1, and since S
has no recession directions, we have xk = 0 for k € K. Hence in

(2.1.8a), x” = x and Apx + Azu' + A3v’ = 0 with u”, v° 2 0 and v~

. 3 k .
integer. (recall x € S) A bound on Wl is max e+ T o'y directly
ja keK

from (2.1.8).

Q.E.D.
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Corollary 2.1.3

If § is representable, conv(S) is a polyhedron.

Proof

Apply (2.1.2) for p=1. Since M is a monoid we have

conv(sa+b + M) = conv(sa+b) + cone(M). (2.1.9)

To establish (2.1.9), note that clearly

conv(sa+b + M) c conv(Sa+b) + cone(M) (2.1.10)

is valid. To prove that

°°nV(sa+b + M) =2 conv(S”b) + cone(M), (2.1.11)
we have, for any v € conv(Sa¢b) + cone(M),

h]
veZIx.s"+ Zum (2.1.12)
j ) K k'k?

b ]
where § Aj =1, Aj » 0, u, > 0, n €M, and 5° ¢ sa#b'
let Al > 0 (WLOG), then we have
me= I ukmk/Al € cone(M), and also (2.1.13)

k




N

ve A, (8 +m + I X-(sJ + 0).
1 j#1 d

But since (s° + m) € §
a+

Furthermore, if w = 8 + w”, where w” € cone(M) and s ¢ Saeb

some integer D » 1, Dw” € M, and by factoring,

s +w' = 1/D(s + Du”) + 1/D(s+0) +...+ 1/D{s+0)

where (s + Du”) € § + Mand (s +0) ¢ S + M. Therefore
a+b a+b

(s + w°) € conv(s + M), and
a+

b

sa+b + cone(M) f}conv(sa‘b + M),

Finally,

°°“V(sa+b) + cone(M) ccmv‘sub + cone(M)) :c:onv(svb + M).

which proves (2.1.9)

B AP e A L N R A AR SN )
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(2.1.14)

b * cone(M), then v € conv(S + cone(M)).
a+bd

then for

(2.1.15)

(2.1.16)

(2.1.17)

By Corollary 2.1.2, °°"V(sa+b) is a polytope. Since M has a

finite basis, cone(M) is a polyhedral cone. By the converse to the

Finite Basis Theorem (Rockafellar [11]), conv(S) is a polyhedron.

Q.E.D.

a—-
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Corollary 2.1.4

N S is an MIP-representable set if and only if there is & bounded
n )
o MIP-representable set 5° and an integral moncid M with a finite basis
s

such that § = 8§ + M,

Moreover, if S is an MIP-representable set (bounded or not) and M

v

t:i is an integral monoid with finite basis, then S = §° + M is MIP-
N

P representable.

! Proof

N -

Ek: The "only if" is established by Theorem 2.1.1.

K-

-~

If S = S + M, let Al, A2, A., and b be rational matrices and

3’
vector such that

if x € §° « for some u, v » 0, u integer, (2.1.18)
Alx + Azu + A3v = b,

and let A, be an integral matrix such that

meM - for some w > 0 integer (2.1.19)
ms= .
A‘w
Then we have,
:% x € S = there are x, and Xgs Uy V, W > 0 with u, w integer (2.1.20)
L Sl
-":- - -
.:j such that x X+ Xy, Alxl + Ayu ¢+ A3v b, and
.
# A = Xp
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wvhich is an MIP-representation of S.
Q.E.D.
The next result is a technical corollary that produces a necessary

condition for MIP-representability using recession directions.

Corollary 2.1.5

*
Suppose S is MIP-representable and x ¢ Qn is a vector fcr which

. 0 .
there exists some x € S and a sequence L » with

o *
x +ux €5 for all k=1,2, ... (2.1.21)

Then there is an 0 > 0, 0 € Q, with the property that for all

x €S and all integers p 2 0,

*
x + pox € S, and (2.1.22)

*
ox € z"(integers).
*

Rmk: The conditions (2.1.2]1) are sometimes abbreviated by saying that x

. . . . o
is a local recession direction of S at x .

Proof

4, -‘l}

A‘\‘...‘... LI

. k
By Theorem 2.1.1, for each k=],2,..., there exists x ¢ sa+b and
*

k . ] k k
m € cone(M) with x + Tx =x + gm , vhere tm €M (so that

RIS

P A

k
m € cone(M)). Then note
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* k k °
Ix -m ¥ € Ix - x l/rk < B/t,, (2.1.23)

where B is a bound independent of k.

*
Since T, * *= we have x ¢ clcone(M) = cone(M), as cone(M) is
*

finitely generated [8). Hence, for some o > 0, we have ox € M, which
implies cx* cz". Finally, from Theorem 2.1.1, x + pax* € § whenever x ¢ §
and p ? 0 is integer.

Q.E.D.
Example 2.1.1

Let S & Q be an MIP-representable set defined by s = {x €2 | x =

0O or x 2 2}). An MIP-representation of § is

X € S « there exist ups Uy 20, uy, v, integer such that (2.1.24)

X - 2u1 - 3u2 = 0,

*

. 0
with x =1, x = 2, the hypotheses of Corollary 2.1.5 are met by letting

T " k. The conclusion also holds if o= 2, It is important tc ncte

*
that we cannot satisfy the corollary merely by making ox an integer.

E.G., 0 = ] does not satisfy x + ox* p €S for p=]l and x=0. Thus even
integer local recession directions need not be global recession
directions (i.e. need not satisfy (2.1.22)).

Suppose we are given representable sets sl sesey St. Trivially,
their intersection is representable, but what conditions must hold for

their union (Sl US2 U... LJSt) to be representable? The next fixed-
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charge example illustrates some complexities of this questionm.
Example 2.1.2
Let f be the fixed-charge function
fx)=[1,x>0 (2.1.25)
0, x=0,
Note that epi(f) = sl U S, where s1 and s2 are polyhedra (thus
representable) and defined by
5 = {(z,x)|z >0, x = 0} (2.1.26)

5, = {(z,x)]z 21, x »0).

* *
However, S, | S, is not representable. In fact, with (2 , x ) = (0,1)

o o
and (z , x ) = (1,0) the hypotheses (2.1.21) of Corollary 2.1.5 hold for

S1 52.

(0,0) + v(0,1) = (0,Y) £ epi(f) for any Y > 0.

But the conclusion (2.1.22) fails since (0,0) ¢ epi(f) and

In the above, a recession direction of s2 (namely (0,1)) fails to

be a global recession direction of S). However, this is not the relevant
feature of our, example, for the precise relative placement of 5, with
respect to S, (and not merely recession directions) alsoc makes a
difference. E.G., if S; = {(-z,1) | z > 1} then (0,]) is not a recession

direction of Sf either, but sflJ §, is MIP-representable (exercise).

Because of the relative placement of S1» sf and sz. we see that (0,1) is
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e )
' not a global recession direction of § = S, US, (hence § is not
;:ii representable), yet (0,1) is a recession direction of §° = s;U S,. This
e turns out to be the key feature for MIP-representability (see Theorem

2.1.7 below).

The simple construction of the linear system (2.1.27) in our next
result will play an important role in our results to follow. This
construction derives from disjunctive methods {1}, (7].

Lemma 2.1.6

If sl seeey st are bounded MIP-representable sets, then their
union is MIP-representable.

By Corollary 2.1.2, it suffices to show that any union of

polytopes is MIP-representable, since each S, is a union of polytopes.

i i .
Let P; = {x|A'x > b } be non-empty polytopes for i=l,...s. Ncte

. . i
that the boundedness property implies that A x >0 «x = 0, A

representation of Pl Uee- LJPs is given by

x= Tx'; A bl 20, A 20 for isl,...,s  (2.1.27)
i=] i
8
£ A. =] and A, integer for i=l,...,s.
i=1 ? 1

Q.E.D.
Before presenting our main theorem, we must formally define our

use of recession directions. Our definition is restricted to discrete

----------
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recession vectors and from this point on, any mention of recession
directions implies discrete vectors. (Note this restriction has no
effect upon corollary 2.1.5).

*
An integer vector x is s discrete recession direction of a set §

*
if for all x € S and integers p » 0, we have x + px € S. The set of all

recession vectors is denoted rec(S).

Note that rec(S) is closed under addition, and integer multiples,
and 0 € rec(S); thus rec(S) is an integer moncid. [8]

Lemma 2.1.6 is still valid if each polyhedron Pi gives the very
same continuous recession directions {x]Aix > 0}, independent of i. 1In
this case, the P $ # need not be bounded. The same proof of lemma
2.1.6 justifies this claim. In particular, if each function f; is
polyhedral on a nonempty domain (dom(fi) $ ) and the recession
directions of all sets dom(f;) are the same for i € I(i), then the

function

f(x) = min{fi(x)lx € dom(fi)} (2.1.28)

is MIP-representable.
We next state our main result on when the finite union
representable sets is representable.

Theorem 2,17

Suppose that S8, ,..., st are MIP representable non-empty sets.

1
Then § = Sl Ueee US, is MIP-representable if and only if every
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discrete recession direction of every 5; has a positive multiple which 1is

a discrete recession direction of S.

Proof

*
A recession direction x of S; # @ satisfies the hypothesis of

Corollary 2.1.5. The conclusion of Corollary 2.1.5 must hold if S is

MIP-representable, hence our conclusion is necessary.

Next suppose our condition holds: we must show that the
i

corresponding S is MIP-representable. Let the sets sa.+b.p and M* and
i i

constants a., bi > 0 be defined for S.1 as in Theorem 2.1.1. From (2.1.4)
each integer monoid M, is finitely generated and therefore M, has a set

n
of generators a;; € R for j € 1(i), where I(i) is an index set. Each

aij is a discrete recession direction for 5;» and, from our condition,

oijaij € rec(S) for some aij > 0. Since oij € Q, we may take % ¢ 2 by

clearing denominators. Then o. = 1 0.. 1s an integer and
jei(i) 13

aiMi & rec(S). Furthermore, from Theorem 2.1.1 we have

i

Si = sa ‘b o + oiMi i-l'tlb’t (201-29)
i i
In fact, we have
t . t
S= (| St o)t (I oM. (2.1.30)
1¥] i i i=]
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u The containment (£) in (2.1.30) is trivial, since if x € S we have x ¢ S5
:::: for some i=],...,r, and (2.1.29) holds. As to the cont-inment (2 in
NS t t

SR o * . o i *

RN (2.1.30), let x = x + x , withx € UJ § and x € L oM.,

: . a.+b.o. . 11

n i=] i i i=]

N Since each s! £ S., we have x° €S. Since o.M, & rec(S), we have
NG ai*bioi 1 11

*
x € rec(S), Thus x € S.

Each set S: +b.0 is a bounded set, and MIP-representable; thus by

i i
Lemma 2.1.6, the union is representable. Since each Hi is finitely

t
generated, so is I oM.. By applying the necessary condition of
i=]

corollary 2.1.4 to (2.1.30), $ is MIP-representable.

Q.E.D.

From Theorem 2.1.7, we may determine representability of any

finite collection of representable sets using discrete recession
directions. Moreover, from the proof of Theorem 2.1.7, it is not

necessary that every discrete recession direction of Si have a positive

ahy

.
.

v s
.

multiple that is in rec(S); we only need oM. S rec(S) for a suitable

LR )
BN
.(..ﬂ':..

integer o, 2 1, where M, is the integer monoid of (2.1.4). One easily
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proves that M o rec(si), but the converse is false, as our next example
shows, This example also illustrates the fact that M, depends not only
on S , but also on a specific representation for Si.

i
Example 2,1.3

A representation of the set S = {x|x > 0} is
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x = x + 2x2, 0 < xl < 2, xz >0, xz e 2. (2.1.31)

Using (2.1.4) to determine M, we find that
M= {x= 2x2]x2 » 0, x, €2}, (2.1.32)

As x| = 0 is forced in M. We know that a recession direction of S is

x* = 1, but in this representation x* = ] § M. (However, whenever our
MIP-representation results in a x* € rec(S), but x* E M, we will always
have some ¢ > 0, with ox* € M.) If '2' is replaced by 'l' as a
coefficient in (2.1.31), the resulting M is indeed all of the recession
directions. An alternate form of Theorem 2.1.7 requires the cone of the
recession directions of the set S to be equal to the union of the cones

. of recession directions of each Si'

Corollary 2.1.8

Let Sl seeey St be MIP-representable and put § = SILJ cerU Sy

Then S is MiP-representable if and only if

t t
cone(rec(s)) = (J cone(rec(s,)) = I cone(rec(si)) (2.1.33)
i=] i=]

In particular, if S is MIP-representable, the right-hand-side of (2.1.33)
is a cone.

Proof:

By Theorem 2.1.7, § is MIP-representable if and only if
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rec(si) c cone{rec(S)} for i=],...,t. (2.1.34)

(Recall that the cone operation is only with respect to rational
multipliers).

*
Suppose S is representable and x € rec(S). Fix any x° € S. Then

. o * C e
there 1s some S; such that x + qx ¢ §; for infinitely many q > 0. By

*
Corollary 2.1.5, we also have ox ¢ rec(Si) for at least one o > 0 and

iefl ,..., t}, Thus,

t

rec(S) g cone{rec(si)}. (2.1.35)
i=]

Upon taking the cone generated by each set Si in (2.1.34) and applying

(2.1.35), we find

t
rec(S) ¢ |U cone{rec(S.)} & cone{rec(S)}. (2.1.36)
i=] :
t
We now show that C = | cone{rec(si)} is a8 cone., This will alsc
1<]
t
demonstrate that C = [ cone{rec(Si)}.
i=]

In fact, if x, y € C then for certain j, and k, we have
X € cone{rec(sj)} and y € cone{rec(sk)}. By (2.1.39), x, y €

cone{rec(S)}, so x + y € cone{rec(S)}; i.e., for some o € Q, we have

.

e
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o(x+y) € rec(S). By the first containment in (2.1.36), for some p we

,. ..,v..
N .. VLA
o te le I I

.
A 2

have o{x+y) € cone{rec(sp)} and hence x+y € cone{rec(sp)). As C is

closed under addition (and clearly closed under positive multiples), C is

e

a cone.

By applying the cone operation rec(S) in (2.1.36) we obtain

WTate
P
L lag a
T

(2.1.33) when S is representable.

Suppose (2.1.33) holds, it implies cone{rec(si)] € cone{rec(s)}

::; for i=1,...,t, in which case (2.1.34) follows, forcing S to be
a7
ESZ representable.
- Q.E.D.
%
P . .
e Note that, as we saw in the fixed-charge example (Example 2.1.2),
o

DY

it is not sufficient for the r.h.s. of (2.1.33) to be a cone. But if the

core{rec(si)} is independent of i=1,...,t, the result holds.

Ccrollary 2.1.9

If cone{rec(Si)} is independent of i=l,...,t, and each S. 1is
1

representable, then § = SILJ N L_JSt is representable.
Proof:

*
Fix i=],...,t. If x € cone{rec(si)}, then for all j=1,...,t we

*
have x ¢ cone(rec(sj)). Hence, for any j there is some integer o >0

*
for which we have o;x € rec(Sj).
*
Define o = 1N o;. Then ox € rec(sj) for all j=1,...,t. Thus
i=]
*
ox € rec(S), and the necessary condition of theorem 2.1.7 is verified.
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We note, from example (2.1.2), that the sufficiency condition of
Corollary 2.1.9 is not necessary.

Proposition 2.1.10

1f S is MIP-representable, then S is closed.

Suppose xn ¢ S for n=1,2,... and xn + xo. With a = Ix°I + 1, Su
is a bounded representable set. By Corollary 2.1.2, Sq is a finite union
of polytopes, and thus closed. Since xn € S, for large n, x° €S, ES.

Q.E.D.

Example 2.1.4

The "fixed-benefit function" f given by

0, x=0
f(x) =
-1, x>0, x <M

for either M finite or infinite, is not MIP-representable, since epi(f)

is not closed and Proposition 2.1.10 applies. (Note that

1
(-1, 30 € epi(f) for each n but (1,0) § epi(f)). (N.B. 1In the

"minimizing format" we have assumed, cost is minimized, so that a benefit
or profit shows up as a negative cost. If one switches to a maximizing
format, the difficulties will remain).

By the kind of reasoning as in the example, one easily establishes

the known result that a representable function is lower semicontinuous.
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Example 2.1.3
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The "fixed-benefit function with minimum usage level” &, is given

\-
o

""‘ f

by

For M> 6§ > 0, and M finite, f(x) is MIP-representable. In fact, one
easily shows that epi(f) is the union of two polyhedra which have (1,0)
as their sole recession direction, and our earlier remarks apply. In
fact, by Theorem 2.2.] and remarks to follow, f is representable using
only binary integer variables in a set-partitioning constraint.
(Actually, we can have M infinite and f will be representable; this is a
somewhat harder exercise).

We conclude this section with a necessary and sufficient condition
for a set S to be MIP-representable.

Thecrem 2.1.11

A set S is MIP-representable if and only if § has the form

t
s=(U P.)+M (2.1.36)
j=] 2

for a finite set of polytopes Pl ,..., P_ and an integer moncid M with

t

finite basis.
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Proof:
}{. Necessity follows from Corollary 2.1.4 and then Corollary 2.12.
R

-~
»

t
Sufficiency follows by Corollary 2.1.4, since §° = U P. is MIP-
i=]

e representable (rec(Pi) = {0} as each P is a polytope, and e.g. Corollary
(RS

NS

‘?x 2.1.9 can be used).

)
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Q.E.D.

Section 2: Bounded-integer Representability

In this section we explore Meyer's concept of bounded
representability. We define S as bounded MIP-representable if there are

. . o
ra:ional matrices Ay Ay, Ag and a vector b, plus a vector bound u such

that

o
Xx € S -~ there are u, v » 0, u integer and u < u , and (2.2.1)

Alx A2u + A3v = b,

Note that S need not necessarily be bounded as a set, in order to be

IRV A

bounded MIP-representable; e.g. we can have S = PllJ P2 where P1 and P2

«Pan
‘l\",l_"'

CaNg Yy, N

o

are unbounded polyhedra with rec(P,) = rec(Pz).

Theorem 2.2.1

r

~
<
<
‘.-\"

]
L
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S is bounded MIP-representable if and only if:

’ a
P

¥

o

(i) S is a finite union of polyhedra; and also

. * n
(ii) The following condition is satisfied for every vector x e Q :

S e
N}
"

a
e
P

.:l 'l‘.ﬂ

. o . o *
I1f there exists x € S and L with x + X € s for k=1,2...,

&2
A
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*
then for all 1 > 0 (1 € Q) and all x € S, we have x + ™ ¢ S.

Bemark:

The condition in (ii) is, in words, that every local recession

direction of S is also a continuous global recession direction of S.

Proof:

First suppose S is bounded MIP-representable. Clearly, S is a

union of polyhedra.

* o
When x # 0 is such that there exists an x ¢ S and LR with
o *
X + Tx €S for all k=1,2,.,., then there exist U Vg 20 with u

integer such that

o * o
Al(x + T ) + Ayu, + A3vk =b, and u, < u for all k. (2.2.2)

*
Dividing both sides of (2.2.2) by 1 (th » Ups vk) I ++ ®and using

*
compactness we find that there exists v » 0 with

Alx + Av =0, (2.2.3)

* *
By rationality of Ay, Ay, X , we may assume Vv is rational, By a direct

*
computation, x + T™x € S whenever x € S and p » 0.

For the converse, suppose that S is a finite union of nonempty

polyhedra s = Py U ... LJP;. and the condition holds. 1If we utilize the
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notation Py = {x | Aix > b}, then (2.1.27) provides a bounded
representation of S.

In fact, let the set represented by (2.1.27) be denoted S°.
For i=l,...,s by putting Ai = ] and Aj = 0 for j %1, xj =0 for j #1,
we see that P, R S°. Thus § & 5%, Next, let x € 5§, so that (2.1.27)
holds for certain xi and A;. For some k=l,...,s we have ) =l and

Ai = 0 for i # k. Without loss of generality, k=1, If i % 1 and

i1 i o i °
Ax -b Ai 20, then x + 1x € P; for all p > 0 whenever x ¢ P{. By

the hypothesis (ii), x + Txi €S whenever x € S and T » 0. We have x1 €
S; hence xl + x2 €S; hence xl + x2 + x3 € S; etc. In this manner, we
establish that x = txi € S. Hence $” &S. We conclude that § = §~, as
desired.
Q.E.D.

Theorem 2.2.1 excludes non-trivial integer monoids, as well as
many other unbounded representable sets, from being bounded MIP-
representable.

The proof of the "sufficiency" part of Theorem 2.2.1 reveals that,
when S is bounded MIP-representable, it has at least one representation

(2.1.27) in which all the integer variables ocurring are binary variables

that appear in the same set-partitioning constraint (i.e. Iy = 1.
i
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Section 3: Sharpness of Representations

Another property of MIP-representations involves the "relaxation"
of the nonnegative integral variables u of (2.1.1) to nonnegative
rational values.

Our interest in this relaxation lies in the fact that, in branch-
and-bound algorithms, this relaxation is utilized in the subproblems
formed. Obviously, it is desirable for this relaxation to be "as
accurate as possible." We next prove that the relaxed representation
contains the convex hull of the original set S. This fact places a
substantial limitation on the accuracy of the relaxation.

Proposition 2.3.1

Whenever matrices Al, Az, A3, and a vector b exist such that

x €S + there are u, v » 0 with u integer and (2.3.1)

Alx + Azu + A3v = b,

then the following holds:

x € conv(§) + there are u, v » 0 such that (2.3.2)

Alx + A2u + A3v = b,

Proof:

x € conv(S) implies there exist Ai > 0 for i=],...,n such that

n n
x = I A x. where I A, = ] and (2.3.3)
j=) 12 i=] ?
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P\j‘_

o ‘
- x. € S for i=1,...,n. i
;ﬂ; By taking a summation of the following valid equalities,
.'_*.:
}"\“

1) = 1
o Alxlxl + Azklul + A3Alvl Alb . ul integer
oo
‘:-\ . 3

;' + - .

. Alxnxn Azxnun + A3Anvn Anb » Y integer

we get,
A(}:Ax)-#A(ZAu)#A(IAv)'b
i 22 2 e 12 j=p 11
which gives (2.3.2).
Q.E.D.

A MIP-representation of S (2.1.1) in which (2.3.2) is bi-
conditional (=) is called "sharp." A sharp representation is as accurate
as possible in its linear relaxation. By Proposition (2.1.1), this may

not be very accurate; but inappropriate MIP representations can be even
less accurate.

Example 2.3.1

The bounded fixed-charge function
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0 , x=0

u f(x) = 1 , 0<x ¢

+® , x ¢lo0,1)

»
L

3

.
.
PP

. . 1 . ,
has an MIP representation of epi(f) as: "z >_ex, 0 < x <1, z integer.'
2

] 1
The LP relaxation defines the function ;nx on [0,1), and the epigraph of

4

»
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.
AL ]
. oo

o
SR )
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:' 'l

1 .
—c<x is larger than conv(epi(f)). Of course, the MIP represntation
2

s Tr N
7,

‘y

"2 x, 0 ¢x <1, z integer"” is sharp. As we shall see below, MIP

»

representations in common use are often sharp.

.1 ' ' Y v
A 4 &
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Ay G2y
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In lemma 2.1.6, we proved that union of polytopes is

representable. We now show that the corresponding representation

depicted by (2.1.27) is sharp.

Prepesition 2,.3.2

I1f all the non-empty polyhedra Pi(itl,...,s) have the same
directions of recession, then (2.1.27) is a sharp representation of
Pl U UP.

We omit the proof that (2.1.27) is a representation of
P, U... LJPS. This proof is easily accomplished by, e.g., using our
argument below for the sharpness of the representation, and then noting

that (when the A are all integer) we have Ai = ] below.
i

To establish sharpness, we need only show one direction cf the bi-

conditional, and cite Proposition 2.3.1. (To establish a representaticn,

we need only show the same direction of the bi-conditional in (2.1.1), as
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the converse direction is trivial for (2.1.27). 1.e., for the set §
defined in (2.1.27), one trivially has SDOPU .- UPs).
In (2.1.27) relax "Ai integer" to "Ai € Q" for i=],...,s.

Then if A. > 0, we have x./A. = w. ¢ P..
i i" 71 i i

ML A
v et e .
P

. PR A

:j' We find that x = I A.w' + I w', where wi eP. if A, > 0 and wi
N~ 1 b § 1

e A.20 A.=0

N i i

1?- is a recession direction of Pi if xi = 0.

l . . |

e Without loss of generality, A; > 0 (as ZA; = 1). Then MW+
P . . .

. 1 1 1 . 1, . . .

_:ﬁ I w =M(w ¢+ I w/X). Since each w is a recession direction of
s, Ai=0 Ai=0

i
'eyw ¢+ I w /Al € P;. Thus, without loss of generality, we

A.=0
1

P, also, w

i
can assume x = I A;w . Hence x € conv(P; U...U Ps).
A.>0
i
Q.E.D.
1f the MIP-representation of $° is sharp in Corollary 2.1.4, the

construction gives a sharp representation of S. Thus sharp

representations always exist.

Note that as integer variables are arbitrated (set to zero cr to
one) in a branch-and-bound algorithm, the representation (2.1.27) of the
union of bounded sets SILJ ool St, as obtained by following the idea of
the previous paragraph, does not correspond usually to subunions.

The juxtaposition of sharp representations for two set Sl and S_,

2

while a representation for S [} S , is typically not sharp. E.g. 1f Sl
1 2

n
is a polyhedron and S8y =2 is the n-dimensional integers, the linear

. )
2= o
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relaxation of the juxtaposed representations gives the polyhedron Sl
(which is typically not the convex span of the integer points in Sl)‘
Thus the problem, of obtaining sharp representations of intersections of
representable sets, subsumes cutting-plane theory for linear integer
constraints, and is therefore not expected to have an easy solution
except for special cases.

It is sometimes convenient to state the "polyhedral" disjunctive
representation (2.1.27) in an alternative form, called the "extreme
point" form.

Let P, = conv{xij | 3 € I(i)} + C, where the index set I1(i)
depends on i=1,...,s and the polyhdedral cone C = cone{vk | k €K} is
independent of i. The "extreme point" representation of PILJ .U P,

is:

- ..
x= I z Ai.xzj + I okv
i=] jer(i) keX

k

(2.3.4)

A, = I A,
1ojer(i) VI

5
1= ¢ 2,

i=] 1!

Ai integer
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Proposition 2.3.3

If all the non-empty polyhedra Pi(i=],...,s) have the same
directions of recession, then (2.3.4) is a sharp representation of
p o e P .

1 U U s
Proof:
let S° be the set defined by (2.3.4) in variables x € R", and let
S = P * s 0 L]
1 U UPs
If x e P, i let A T % > 0 be such that I A.., =1 and
N jerti) *3
i .
X = L Ai-x J + I okv . Then by putting A.=1 and A.=0 for j# 1,
. 1) 1 J
jeI(i)
(2.3.4) holds. Hence $° > P;. As i was arbitrary, S ¢ S”.

If x € S”, suppose that A, = 1 in (2.3.4). Then Aj =0 for j #1
i
and so x = L Xij 4 J + I °kv € Pi‘ Thus x € §°, and s0 S = §”.
jel(i) keK -

We have established that § = S°, i.e. that (2.3.4) is a
representation of S.

To see that (2.3.4) is exact, only one direction of the bi-
conditional need be established (i.e. that if x solves the linear
relaxation, then x € conv(S)).

Put 1 = {ilki > 0); we have I # 9. For i €I, define

Aij = Aij/Ai' Without loss of generality, A; > 0. With q = qk/Al, we

have:
ij K
x= I L Xijx + P Okv
iel jel(i) k eK
e e e et AT N ey e e PR .‘- -
et ':.I._.-f: A -‘.'.':'.';':';"_':.:':-." ;-'.;"'-";-':' ':’.':':‘; ..; ;'. :S:A:; ‘Ll ‘-‘A— AT 1- LS ..'h{\'\-‘n ,\l .\-\ .\.\n\ ;‘lx\n‘ Ma S '.A’-Il
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- K
= I N0 a4 pav
iel jer(i) 3 Kk &K
. 1] .k 1j
‘Al( b kijx + 2q(v)+ Ty I Anx
jeI(l) keK iel *ojerci)
i#l
We also have , for iel, T A7, = A /A = 1.
jel(i) 1
Upon putting x(l) = I A;jxlj + I oEvk, x(l) = I X{.xIJ
jer(i) jerci) *d
for i€l and 1#]l, we easily prove that x(l) € Pi: S for iel. Since
i
x = I Ax and I A =1, xc¢ conv(S), as desired.
iel iel
Q.E.D.

Note that Ai can be removed in the linear relaxation of (2.3.4),

which becomes

x= I T A xt e okvk (2.3.5)
i=]l  jel(i) keK
s
1= I I A
i=1 jel(i) 3

Only (n+l) constraints appear in (2.3,5). The linear relaxation of

(2.1.27) contains many more constraints.
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The "common wisdom" regarding the Simplex Algorithm, in practical
applications, is that its running time is linear in the number of
constraints, and is affected by the number of variables only slightly.
Clearly, this practical observation is based on experience where the
number of variables is not exponential! For “arbitrary" polyhedra Pi’
the number of extreme points xij (i.e. the size of 1(i)) is exponential,
so the exact representation (2.3.4) is of no practical value.

However, a second observation from experience is that, when
representations are called for, the Pi which arise are not "arbitrary" at
all, and have very few extreme points. Part of the reason for this is
that the Pi thus occurring are of small dimension, but that is not the
entire reason, In any event, for the common representations there are
not many variables Aij and the (n+l) linear inequalities needed, assumes
primary importance. As we shall see in the next section, the mecst
efficient known linear relaxations of common experience - which have
often been arrived at without a general method or explicit mention of
the sharpness properties of (2.3.5) are instances of (2.3.5).

Section 4: Corcllaries and Applications

4.1 Relation to Earlier Results, Section 2 of this chapter

contains a definition of bounded-MIP-representable sets that is closely
related to the definition used by Meyer [9]). Specifically, a function f
1s bounded-MIP-representable if and only if f has a rational MIMM with
the bounded-integer property of (2.2.1). We will indicate in this

section that our Theorem 2.2.1 is a generalization of the five main
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i theorems used by Meyer for the one-dimensional problem, for the case of
B rational representability.

jkj The following result is Theorem 2.2.1 of Meyer [9] for the

e

hAo )

e rational case.

C Theorem 2.4.1

.“..\* .

»;:j A function g(x), with a bounded non-empty effective demain

LI

'41’0 - - . - .

" contained in R, is bounded MIP-representable if and only if:

i;?__ (1) The effective domain is the union of a finite

e

S number of closed and bounded intervals;
(2) g(x) is lower semi-continuous;
(3) g(x) is either identically - = or finite and
piecewise-linear (with a finite number of
segments) on its effective domain.
A function g(x) with bounded domain satisfies the given conditions

if and only if epi(g) is a finite union of polyhedra each with a single,

*
common recession direction, x = (0,1). By Theorem 2.2.1, a functicn

s .
(S SEN
RSN

with bounded domain is bounded MIP-representable if and only if epi(g) is

0.| .
.

[

a finite union of polyhedra with sole recession direction (0,1).
Q.E.D.
Meyer's Theorems 2.3.1 and 2.3.2 concerning semi-infinite domains
are proven in a similar manner. However, one and only one polyhedron Py

in the finite union epi(g) = P, U... L)PN will have two extreme

s
1A

»

*
recession directions, one of which is x = (0,1), and the other unique to

S
St
ety

a »

the "final" unbounded interval. This additional recession direction
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serves to restrict the functions thus representable. For example, the

Lo

~Tf conditions of Theorem 2.3.1 of Meyer involve an effective domain bcunded
L

N ..

Ao from below. The conditions are:

o

o

Y

:

(1) The effective domain is a closed interval;

(2) g(x) is lower semi-continuous and continuous from the right;

(3) g{x) is either identically - « or finite and piecewise-linear
on its effective domain;

(4) If g{x) is not identically - », then c; < ey where ¢ is the
slope of the "final" (infinite) interval and c; the slope of
of all other intervals,

As before, our Theorem 2.2.1 leads to the condition (3). The new
recession direction (1, cN) of PN must be a continuous reression
direction of epi(g) = P]LJ e U Pn’ and the continuous nature of this
recession direction will make (1), (2), and (3) necessary. E.g., if g is
not lower-semicontinuous, there is x0 e R and § > 0 such that for a
sequence Gm + 0" we have g(x° * Gm) < g(xo) - §. Since (x° % 6m, g(x%)
- 8) € epi(f) = Py -+ Py and epi(g) is closed, we have
(xo, g(xo) -8) € epil(g), which is impossible. For a second instance, if
g is not continuous from the right, by lower semi-continuity there exists

*, g(x° + Gm) > g(x%) + 6.

xand § > 0 such that for a sequence Gm + 0
But as epi(g) has a recession direction (1, cN) we also have g(x° + Gm) <

g(xo) + cNém, and thus a contradiction. Our Theorem 2,2.1 can also be

directly applied to obtain the sufficiency of (1) - (4).
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u Meyers Theorem 2.3.2 allows the effective domain to be unbounded
i;i: from the left. Only condition (4) from above is altered to read:

Gl;; (4) 1f g(x) is not identically - =, then ¢, <e. for

i=2,...,n, where € is the slope of the "initial (unbounded
from below) interval.
Identical arguments from Theorem 2.2.1 also establish this result.
Theorem 2.4.1 of [9], involving a domain which is unbounded in both
directions, amounts to juxtaposing the two cases of unbounded domains
given above.

One advantage of our approach via recession directions, is that it
indicates the generalization of these results to functions of more than
one variable; and the statement of the result is succinct, rather than
involving a list of conditions.

4.2 Application to Other Models. 1In this section we give en

instance in which the inequality description of a function (2.1.27),
which results in a disjunctive MIP-representation, becomes Beale's
representation of a certain model studied in [2, p. 216] (when an extreme
point formulation (2.3.4) of the linear inequality system is employed).
Beale's representation for an approximation of a general function

g(x,y) = xf(y), where f(y) is nonlinear, is equivalent to (see [3]):

2 5 _
z > I IAx £(¥) (2.4.1)

i=l j=1 o

2 s

I I, =1

i=] j=1 1J
G T T R Ry S Rty
N b I A R A S g S Y s Y0 Mg R S S I PP A ST A TN I e
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s

x= I (xl YRS "zj)
=1
2 s

A.. + A . € Aj for j=1,...,8

1) 23
8
where I A =] and A  binary,
j=1 J )

where 31 = Xin and X, * X ax Fepresent the bounds on x and Xj represent
the "grid points" fer a certain approximation to f(y) over some
interval.

Our linear inequality method of representing the same function

g(x,y) = xf(y) proceeds in two steps. First, we isolate the following

function as a "piecewise-linear" approximation of g:

glx,y) = xf(Y,) ify-= Y, and Xoin €% € Xnax (2.4.2)

5.,
4,
'

b s
L R e

e

xf(is) if y =Y and

aa
> s

. .' ..} ) -
o SR

e

v

Next note that, for each j=1,...,s the set

Pj = {(z,x,y)]|z > xf(xj), Xiin €% € xmax, y = Xj is a polyhedron with

. . . o
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(1,0) as its sole recession direction, and that epi(;) =P U...U Pg.

Using (2.1.27) to represent epi(g), we obtain:

5
z= I ).z,
j-lJJ
)
x= I AXx,
jsl J J
8
= 2 A.Y,

. > X, Y.)
25 fo(_J

X . A, €x < x A,

-min j -max j

s

LA, =1, A, integer.
j:l J J

An extreme point representation of (2.4.2) alters expression (2.4.2) as

follows. Since the Aj are binary variables, and I Aj = ], there are

Ty '—'(;‘l‘-"'- VRN e e e

b
continuous variables A,. and A,. with A. = A . + xz. and x. = A . X . ¢+
1; 2) 3 13 ] 1j =min
‘25 X ax® Ve have:
Tt R I T e e e I L A e .-".-.‘."'.‘:'-'-’.' PN N
"‘."-'- v \.‘ P n.‘.\ s, L'\ x'q.__\. ;A‘C\..s. AR A B P Pt NPT, WA Yo VPSP I 3 e |
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Ei 2 s

" x = ifl jfllijgi, where 31 = Kmin; 52 = !max; (2.4.3)
oN

h“‘.

-i* s

A A, + A _ <A, X  binary and L A =1;

- 1 725 it =1

W .
P
o
RS
V. J
RS
PYalps
'l
AN
s
[

ha

+

2 5
) LA, =1;
i=] j=1 1J

s

= (A, +2Ar,)¥

y jsl lJ 23 =J
s 2

z > I I, X £(Y)

jsl 1:] 1 1 J

which is identical to (2.4.1). An important note for applications is
that the specific representation used by Beale contains more variables,
but fewer constraints than the linear inequality formulation. Thus for
large problems, Beale's technique is better suited for L.P. pivoting. As
a general rule, we can always use the extreme point representation of the
polyhedra P, in (2.1.27) in place of the linear inequality
representation, if that is advantageous.

2.4.3. Sharpness in Separable Programming, an Application

In this section we treat the representation of a separable

.
2, -/‘ ‘/

n
function gi(x) = I gi(xi), by approximating each 8i(xi) by a piecewise-
i=]

'y [y
e,

[
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linear function g(xi). Clearly, our definition of sharpness for each

approxim-tion ; (see 2.3.2) and text) is iden*ical to
. L )
ep;{gi} = conv{epx(gi)}, (2.4.4)

where Ei is the function derived from the LP relaxation of the MIP-
representation of ;;(x).

We next show that an approximation of ;;(x), defined on a bounded
interval T, may be constructed with a finite union of polytopes, which is
MIP-representable. We then adapt the disjunctive MIP-representation used

earlier in this thesis (see 2,1.27) and (2.3.4).

Proposition 2.4,2

Let E(t) be a piecewise linear function of one variable t on a
closed, bounded interval T. Suppose that g(t) is linear on each interval

[cj—l’ cj] (k=1,...,8), where the intervals are disjoint except for end
points, and have union T. For each k, define the polyhedron

2 ~
P {(z,t) er |t € [‘:j-l' cj], z > glt)}. (2.4.5)

Then (2.1.27) and (2.3.4) both define a sharp representation of g.

Proof:

This follows from Proposition 2.3.3, since (},0) is the ccmmon and

only direction of recession of the polyhedra Pk'
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Q.E.D.

We illustrate the function E in Proposition 2.4.2 in fig. 2.1,

Here oF is the slope of g(t) within the jth interval, Lj = [cj-l’ cj],
and bj = E(cj), the end point values of g(t). Using the matrix notation

from lemma 2.1.6, we describe a polyhedral union description of E(:) as:

<t, €c. A, i*l,...,s (2.4.8)

5
Xj >0, .Elkj = 1; all Aj integers;
J
5
Zt, =t
j=1
s
and enter z = [ (Ajbj_l + ajtj) in the minimizing criterion function
i=

wherever g(t) is needed.
We next shall adapt the '"extreme point" description to our
piecevise-linear example (fig., 2.4.1) to develop an MIP-representation

that also remains 'sharp" after binary variables are arbitrated.

The extreme points of P, in (2.4.5) are (bi—l' ci-l) and (bi’ ci)'
The sole extreme ray (1,0) can be omitted in (2.3.4), since a minimum

value of z is sought. Then the linear relaxation (2.3.5) of (2.3.4)

becomes:
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s-1 2
x= I I (A.lc. + A..c. ) (2.4.9)
j=] j=p 2 12 1+]
s-1 2
1= £ I, ,alla, >0
i=] j:l 1) 1)
s-1 2
where z= I L (A.. b. + A b ) is entered in the criteron function.
i=1 j=1 il 1 12 1+])

Actually, a small simplification enters in this case, if we set

- = d 6 = A + A i < i< s. Then (2.4.9)
01 All’ es xs-l,z an e1 i-1,2 Ax,l if 1 <1< s. Then (2

becomes:

x= I 0.c,
i=1 * 2

1= te , alle »0
i=] 1 :

s
and z = I O.b. is entered in the criterion function. This

i=] *
simplification occurs because the right most point of one interval is
also the leftmost point of the next interval. If there were a "gap" in
the domain, our method would still work, but the simplification would

not.

The system (2.4.10) is the most compact relaxation of a

formulation that is known for separable programming, and is given in (2].
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ii It involves only two constraints, and a number of variables © equal to

pe the number of intervals.

L From Proposition 2.3.3, the system (2.4.10) is exactly a

e : ~L o~

h formulation for g . Thus if g is convex (i.e. has convex epigraph), so
~L . . ~ .

e that g = g, the system (2,4.10) is a formulation of g, as noted in [2].

foss -

E;E When g is not convex, [2] recommends a pivot rule which cannot always be

Pos

P-\'..

used to optimality. Alternatively, one can still solve (2.4.10) and
gather what information is possible via this "best possible" linear

relaxation,

2.4.4 New Representations. At this time, the best of the existing

representations for functions of one variable have nice properties. A

primary applications area for our techniques is to functions cf several
variables.

We focus on a useful function of two variables below, and use
rectangular domains. This use of rectangular domains can have

limitations, depending on the application, if many variables are to be

accommodated (due to the growth in extreme points). However, that

difficulty need not arise if simplicial domains can be profitably used.

Our example to follow is intended simply to illustrate our approach.
If activity i1 is employed, a fixed charge fi is incurred (i=] or

2). 1f both are employed, a fixed charge fy is incurred, and fb need not

be the sum f + f Specifically, we are to model the fixed charge

| 2°

function:
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(R 4

f

0, if xl -x, = K
g(xl,xz) -< fl' if 0 < x, <M, x, = 0; (2.4.11)

1 1
f,1fx =0, 0<x <M ;

el 2 1 2 2

- i < <M,

o Lfb. if 0 < X, Hl, 0 < x, M3

‘.:_\:

fﬁf’ The bounds Ml and MZ will be necessary, as they were for the one-

hfw: . .

NN dimensional fixed-charge problem. As we chose to avoid unbounded integer

variables, we seek a bounded integer representation.

s

e e i’
4

P

)

It can be shown that, for a representation to exist for (2.4.11),

(4

ﬂ‘.. LAy
72l

we need these conditions satisfied:

< < < 4.12)
0<f,0<f max{fl,fz} fb (2

]’ 2)

In fact, if (2.4.12) fails epi(g) is not closed (see Proposition 1.10).
The conditions "0 € fi" simply require that we have a true fixed-charged
(rather than fixed-benefit) problem. Also, "max{fl, fz} <" can always
be arranged. (If it at first appears that £, > £, always set up for
both activities when you set-up for activity two, and use f, = fb).

vhere P = {(z,0,0) | z > 0}, P o= {(z,xl,O) | z » £, and 0 <x

P, = {(z,O.xz) | z > f

<M},
) 1}

9r 0 €%, € MZ}’ and P, = {(z,xl,xz) | z » {b’

0« x| < "l’ 0 < X, < Mz}.

We shall investigate the linear relaxation (2.3.5); and as above,
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u since a minimum value of z is sought we can omit the common recession

direction (1,0,0).

We obtain the following for (2.3.5):

F%" X, = (Alz + A32 + A0 M (2.4.14)

= (A _+ A _+ A )M
_ X2 22 M2 7 M3y’ Th

2 2 4
A+ T A+ T A, + T, =1
01 523 1) =3 23 e 3

A .
all ij >0

where z = (X“ + )‘lz)fl + (Au

be put into the objective function.

+ f is t
+ Azz)f2 + (131 A32 + A33 + A3a) b is to

To obtain (2.4.14), the following list of extreme points were

used, with multipliers Aij » 0 as indicated:
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A
o1 (0,0,0) Py
An (£,,0,0)
P)
A (£;,M,0)
Ay (fz,o,o)
P2
xzz (fz,O,Mz)
A3l (fb,o,o)
x32 (fb’Ml'O) P3

A33 (fb,O,Mz)

A34 (fb,M MZ)

1° J

There are substantial simplifications in (2.4.14). For example, positive
values of All’ AZI’ or A31 deteriorate (raise) the value of x, yet they

do not occur in the expressions for X| o X,; and also on occurs nowhere

except in the last constraint. Thus we may take M= At = 0.

A3

Moreover, if A32 > 0, by decreasing A,, and increasing A ,amount, we

32 12

retain feasibility and can only decrease z (since £, < £ by (2.4.12).
Thus we may take A3, = 0. A similar argument allows the simplification
A33 = 0. We have thus eliminated five of the nine variables in (2.4.14),
and 101 can eliminated in favor of an inequality convexity constraint.
Only three variables remain: le' x22’ and X36. All this depends only

on the necessary conditions (2.4.12)., We obtain:
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= (A, + A34)Hl (2.4.14)

22 ¥ A3,

A12 + A22 + A3h <1, all Aij > 0.

x, = (A, + A

where z = A12 f1 + A22 f2 + A34 fb is entered in the objective function.

It can be shown, in the common instance fb < fl + f2' that we need
not have both A12 and A22 positive when z is minimized. By algebraic
substitution, the case Ajg =0 is equivalent to x2/M2 > xl/Ml’ while the
case A22 = 0 is equivalent to x2/M2 < xl/Ml' The optimal value z(xl,xz)

of z in the minimum can be computed to be

- i . 15)
(fb fz)xllMl + f2x2/M2, if x2M2 > xl/Ml, (2.4.15

z(x ,x ) =
12

flxl/M1 + (fb - fl)lenz, if leM2 < XIIMI'

As we are assuming fb < fl + f2 to obtain (2.4.15), we see that always

z(xl,xz) < flxl/M1 + f2x2/M2, with equality holding 1if fb = fl + fz.
Note that flxl/Ml + fzxz/M2 is the sum of the individual linear

relaxations when joint effects are ignored. In the case fl = f2 = fb = f

that one set-up pays for both activities, (2.4.15) gives
= 2.4.16)
z(xl,xz) f(max{xl/Hl, leMz}) ( 1

which 1s a formula that can be used directly to replace the system

(4.14). (This also can be done with (2.4.15.)




€l

In the less usual case £, 2 £, ¢ f2 that a special "additional

penalty" is levied when both activities are undertaken, we note that

( =
z xl,xz) flxl/Ml + f2x2/M2 whenever (2.4.17)

X, /M) + x, /My €1,

x. »0

X0 %

Indeed, 112 xl’“l' A22 = xZ/MZ, A3A

value, while any increase in A34 produces a larger value of z (consider

= 0 solves (2.4.14) and gives this

A34 as a non-basic variable, and note that its reduced cost is fb - fl -

£, > 0). If x /M) o+ x2/M2 > 1, we must have My > 0 in (2.4.14). Then
from fb > fl + f2’ one can show that A12 + A22 + A3“ = ]. Upon sclving

the resulting three linear equations for z we obtain:

2

whenever xllMl + x2/M2 >1 5 x

= - - - . -18)
z(xl,xz) (f1 + f fb) + (fb fz)xl/Ml + (fb fl)x2/M2 (2.4

%90 >0
For the expression (2,4.18), it can be shown that z(xl,xz) > flxl/Ml +
f2x2/M2 in the region described, i.e. the relaxation value is higher than
the sum of the independent values (as it shOuld be).

The algebraic simplifications performed mechanically above only
amount to removing extreme points of a Pi which is no longer extreme 1in
K = conv (Po L_JP1 LJP2 LJP3). In an easily visualized formulation

(2.4.11) like the present, geometric intuition can speed the process.

Since K is a polyhedron, the linear relaxation z(xl,xz) of g is

the maximum of a finite set of linear forms. Here, more than two forms
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was not needed. The expressions for z(xl,xz) obtained in this way can be

used to replace the systom (2.4.14), if that is desired. The linear

forms involve are exhibited above; we leave the details to the reader,

and note only that this process, too, is part of a general procedure.
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CHAPTER III

m EXPERIMENTAL RESULTS ON THE NEW TECHNIQUES
. FOR INTEGER PROGRAMMING FORMULATIONS
Sele

_‘.'\J

Jeod

gféf Section 1: Introduction

NN

A widely accepted view in integer programming research is that
progress, in utilizing (mixed-) integer formulations to solve real-world
problems, will rely primarily on algorithm advances (for general and
special structures) and clever coding tricks. In this view, we are
perceived as already knowing how to represent a real-world problem with
integer variables; those simple “formulation techniques" appear early in
the subject and by now are widespread in the master's level and even
undergraduate level textbooks. (see e.g. [7)) However, since in the
1970's, the experience of practitioners indicates that some major issues
of formulation have been overlooked (see e.g. (8], [17), (23], [24],
(251).

In this chapter, we are going to provide furthur experimental
results, which favor certain new integer formulations that we introduced
in chapter I1. Our formulations are not ad hoc "practitioners tricks,"

but derive from a systematic study of modelling. These formulaticns are

either directly derived from, or motivated by, developments in the

"disjunctive methods," particularly as in [2] and [14] (see [13]) for a

DX

AN
Fy .:'_ <

survey of these methods). R. R. Meyer [19], [20], [21}, [22] and
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T. Ibaraki [12] initiated the systematic study of "integer modellings";

see also [15).

We caution that our experimental results are preliminary: the

. B I I

Lo NN .,
Jatetd'a

v.a' T LI

SN . . .

5&; problems studied are "small" by industrial standards. Nevertheless, the
(9%

DA advantage of the newer formulations does appear to increase with prcblem

size. Also the initial linear program solved is typically much tighter

,
| Lt
L
N .
" A
. RN

than in standard formulations, a fact which is code-independent., We use
the Land and Powell code because of its accessibility and excellent
documentation. We also run problems using C. H. Martin's BANDBX code,
and CDC's APEX IV mixed-integer code.

We do not contend that the newer formulations will necessarily be

better, in terms of CPU time, than those previous. They often are not,

for example, on tiny problems (fewer than 10 binary variables).
Moreéver, of the potentially limitless number of different formulations
from the real world, we study only a few common ones. Nevertheless, the
new modelling techniques are quite "automatic," easy to learn and to
apply (either by hand, or in a "wrap-around" of a standard MIP code), and
seem to markedly improve performance in some common problems.

The modelling techniques we have developed have these properties:
(1) They are automatic, and do not depend on an ad hoc analysis of the
problem to be modelled; (2) The linear relaxation is optimal for the set

modelled; (3) Under mild assumptions, variable arbitration in branch-and-

bound leads to a modelling of our type, so that reformulations are nct

needed in lower nodes of the search tree.
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For related work on problem formulation, see [4), [8]), [17], [23],

[24], [25).

Here is the plan of this chapter.

In Section 2, we quickly review a few basic concepts and results

from chapter II, and also introduce the idea of "modelling linkage." We
explain the "sharpness' concept, which is part of what differentiates our

modellings from those previous. This is sufficient for the reader to go

¥ﬂ*f c¢n to the description of our experiments, and to our experimental

';i“ results. In Appendix A, we provide (what is essentially) a tutorial on
i%ﬂj those results and techniques from chapter II which are relevant here.
;i% The appendix is optional reading.

E;f Section 3 presents an experiment on sharpness, which we test in

the setting of a multi-divisional firm (like that considered by Dantzig

o and Wolfe [6])) where, moreover, each division has a choice of

3{? technologies at its disposal. This variant of "multiple choice

:::: constraints" is tried, since some hand calculations with these kinds of
"ij: constraints indicate a dramatic lack of sharpness, in the formulations
;;3; given in most articles and common textbooks. Our experiment confirms a
Ty

fif} dramatic advantage for the newer formulations.

*;;T Section 4 presents an experiment on modelling linkage, which we
;;;: test in the setting of separable concave functions with multiple fixed-
;i charges. Our experimentation here is more limited, but it confirms a

.Qii definite, but smaller, advantage of the newer modellingsi
;ig: Section 3.2: What the Experiments Test
:;51 We begin this section with a short summary of some theoretical

results.
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. . B
A set S of rationals in Q is called bounded-MIP-representable, if

there are rational matrices Al’ Az, A3 and a rational vector b, as well
as a bound B, such that:
Wy . .
Edp X € $ ~ there are u, v » 0, with u integer (3.2.1)
oo
t%a; and ||u|| < B, such that
.

Alx + Azu + A3v = b
Functions f which occur only in a minimization objective are represented
via their epigraph epi(f) = {(z,x) | z » f(x)}; their domains may be a
general subset of Qn. This will then coincide with Meyer's definition
of function representability [18] in rationals. (Caution: Functions
occuring otherwise may require representation by graphs or hypergraphs).
A more general concept of MIP representability is given in chapter
11 but we do not use it here. Moreover, unlike some previous work (e.g.
{19]), all our representations are in the rational field, and are of sets

of rationals.

Here is a general result chapter II, which characterizes bounded-
MIP-representability.

Theorem: The set § C Qn is bounded-MIP-representable, if and only if,

both these conditions hold:

a) S is a finite union of polyhedra;

°
8) Whenever x €S and y € Q" ere such that

e . - .
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o
x +ny €8S for all n=1,2,3, ..., then for

every x €S and all A > 0 we have x ¢+ Ay € S,

;~ By the Theorem, any finite union of (rational) polytopes (bounded
ii’ polyhedra) is bounded-MIP-representable, since always y=0 is forced when
;;i; the hypothesis of B) holds, so that B) is vacuous. The Theorem also
é;% shows, that the unbounded fixed-charge problem is not bounded-MIP-

S

representable., (Actually, Meyer earlier showed it is not representable

at all), The function for this charge is

f(x) = (3.2.2)

with ¢ > 0. We have epi(f) = P, LJPz, with P = {(z,x) | x=0, z » 0},

1

P, = {(z,x) | x » 0, z > ¢}, so that condition a) of the Theorem holds.

2

o o )
However, with (2 , x ) = (¢,0), vy = (0,1), and (z,x) = (0,0), we find

that condition 8) fails. This explains why we need an upper bound on x

to get a representation for fixed-charges.,

The Theorem "almost" says, but does not actually say, that when S 1is
written as a union of polyhedra S = PlLJ PZLJ e U P,, then all P, have
the same recession directions. For example, if t=2, Pl = {(xl, x2) |
0<x, <1, 0<x

1 2 2

the Theorem § = P, LJPzis representable, even though P, has no recession

<1}, P, = ((xl,xz) | x, 2 1, 0 <x_ €2,}, then by

directions and P, has (1,0) as a recession direction, (The exact

"placement" of Pl relative to P2 matters; for example, if
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P, - {(xl,xz) |] -1 ¢x, €0, 0<x, <1}, then § = Pl UP2 is not

1 2
bounded-MIP-representable). However, if C is the sum of the recession

cones of the Pi for a bounded-MIP representable set, note that S = (Pl +

]
€© ... (Pg ¢+ C). Hence, "without loss of generality,” the P, = P, o+

C can be taken to have the same recession directions.

Note that some important sets are not bounded-MIP-representable
(indeed, not representable at all), as for example the "complementarity
set":
f(xl,xz) = {(xl,xz) >0 | x ox, = 0} = Pl LJPz, where

P, = {lx; x) 20 | x,= 0} and P, = {(x ,x)) >0 | x, = 0}.

(One easily verifies that B) fails). Meyer and Thakker have introduced

other representability concepts for such a set [22]), the concept of

"polyhedral union" representability, which will not concern us here.

Our focus in this chapter is not on the issue of the existence of

representations, but on certain qualities they may have, when they exist.
The first significant quality is that of “sharpness."
A specific bounded modelling Al' A2, A3, b for a set S is called

sharp, if, in addition to (3.2.1):

x € clconv(S) ~ there are u, v » 0, (3.2.3)
{{ul| € B, with
Alx + Azu + A3v = b,

In (3.2.3), the integrality condition is dropped (''relaxed") on u, and
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clconv(S) is the closure of the convex span of S. 1In chapter 11, it 1is

L)

oy

shown (and it is an easy result) tha:, whenever (3.2.1) holds, then

x € clconv(S) + there are u, v > 0, |[u]| < B, (3.2.4)

with

A x + A + = b,
1 2u A3v b

Therefore, a modelling is exactly sharp if its linear relaxation is as

"tight" (i.e. small) as possible.

In branch-and-bound codes, the algorithm uses the linear

relaxation of a mixed integer program, both for fathoming and for guiding
the search strategy. Therefore one might heuristically conclude that
sharp formulations should be superior to nonsharp cones. This is not an
exact deduction, since sharp modellings may contain a different (cften,
but not always, larger) number of variables and constraints. Morecover,
80 many heuristic devices are used in branch-and-bound, which are nct (in
some sense) "monotone" with the size of the linear relaxation, that an
exact analysis seems very difficult. However, the heuristic principle is
clear enough. Moreover, we discover that many of the "textbook
formulations" are hot sharp, so an experiment seems in order.

The concept of "sharpness" is introduced by Meyer [21] for
functions, with the larger descriptor, "linear relaxation optamal." 1In
chapter 11, we provide sharp formulations for all bounded-MIP-
representable (really, all MIP-representable) sets, which also retain

sharpness in many (but not all) situations as the variables are
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n arbitrated by a branch-and-bound code. The second property, which one
L;i' might call "hereditary sharpness,"” is important when one cannot intervene

in the code at each node, to "touch up"'the representation. Our
formulations are presented, with worked examples, in Appendix A,
We now wish to introduce the newer concept, of "modelling linkage."
Representations are not used by themselves, but as parts of larger

programs. For example, we may have a program:

min: ¢x (3.2.5)
subject to: Ax = b, x » 0
% integer, jeJ
XES

1

ar

XES

When both S1 and S2 are bounded-MIP-representable, and in fact

YO
el 'f%‘." '
R i i W S A NP

.
’

X € Si « there are ul, v’ > 0 with ulinteger, (3.2.6)

.
.

'

Ilui|| <m, and
A;x + A;u1 + A;v‘ e bt

then we can solve (2.5) via this mixed-integer program:

min: cx (3.2.7)

subject to: Ax = b

Vet e T et
S ~ .

.- - ® - - - - 0
tafalialafalalaseal st Al
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{i:

o 1 11 11 1

:u AX ¢ Ay + AV = b

e 2 22 22 2

1;:':-. Alx + A2U + A3V

AR 1 2 1 2
. X, u,u,v,v >»0

ul, u2 integer
xj integer, j € J.
Note that the constraints of (3.2.7) actually give a bounded-MIP-
represention of the set
s={x >0 | Ax = b, x € SILJ Sz, xj integer for j € J}.
However, it is important to realize that this may fail to be a sharp

Presentation of S, even if one begins with sharp representations of Sl

and S,. In particular, the representation of S obtained by our methcds

(which give sharp representations) may, and often do, differ from the

constraints of (3.2.7).

Modelling linkage refers to the way that the representations of
smaller side conditions (like x € Sj) are made independently, and then
simply "attached" or "linked into" the whole program (3.2.5). By
sharpness considerations, one ideally would like to represent all of a
program at once (the set S in the example above), rather than by "pieces"
which are attached on. However, generally the size of "large chunk”
formulations can grow multiplicatively, sc some compromise is often

needed. (However, see later for an instance where the 'large chunk"

formulation is smaller.)

)
.
0

[

The issue of modelling linkage can be a very subtle one, as, for

4

example, a representation of Sl

= {x €5 | X integer for j € J} can be
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superior to one of Sl alone. It is best clarified in a more general
setting (similar to that of the co-propositions of [14]). Modelling
linkage is quite clearly related to the issue of sharpness, but it goes
further, in that it concerns the setting in which sharpness is sought.
In addition to the “sharpness" aspect of modelling linkage, there
is a second subtlety subsumed in this concept, which we call "variable
co-ordintion." For example, if a piecewise-linear function of ome
variable, which also has fixed-charges, is to be modelled in two separate
sections -one for the piecewise-linear part, and one for the fixed
charges - the separate modelling may not take explicit care to insure

that the same interval of function value is being considered in one part

as in the other.

Particularly, after some integer variables controlling segments of

the function have been arbitrated to specific binary values, it is quite

E:_ possible that in some subproblems of the branch-and-bound tree, different
segments are being considered in the separate modellings. This fact need
not show up as a simple incoﬁsistency of the linear program for that
subproblem, but it can greatly multiply (unnecessarily) the size of the
branch-and-bound tree. We say in such cases that the segment variables
are "unco-ordinated,”" and such a lack of co-ordination would not occur in
a simultaneous modelling of both aspects of the function together.
Incidentally, in some cases variable co-ordination can be achieved
among the separate parts of the modelling, without geing te our
techniques; but this phenomenon of co-ordination seems not to have been

discussed previously. Variable co-ordination refers primarily to the

war
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q! hereditary properties of modellings (i.e. how they behave as integer
N variables are arbitrated).
i_ For a preliminary test on modelling linkage, and hence also
il variable co-ordination, we choose a problem in separable programming of

N the type discussed above. Each objective function involves a single
variable, and is piecewise-linear, except for "fixed-charges'" {(cr, in the

economist's terminology, ''set-up charges' - as all our costs are variable

rA
.
oo

[N ]
. .

prior to the decision made in connection with the model).

We use four formulations: the first two are '"separate"

LN

1,

=TT

i

formulations, one for the fixed charges and one for the plecewise-linear
segments , which are separately attached to the main program. They are

similar to formulations found in textbooks. The third formulation is our

sharp formulation for the entire function (done at one modelling). The
fourth formulation is of the "separate" variety, and as each separate
part comes from our techniques, each separate part is both sharp and
hereditarily sharp. (One of the textbook-like formulations is not sharp,
although it did quite well; the second is not hereditarily sharp.)

As it turns out, the third formulation, which involves the entire
function, also requires half as many binary variables - an example of how
a smaller program can sometimes have a tighter linear relaxation! By the
usual rule of thumb, the third formulation ought to run faster, and 1ts
improved sharpness should increase the effect. However, we run the
experiment to be certain, and it does confirm our expectations.

Incidentally, the data of the type used in our second experiment

is such, that we believe our favorable results are due to the variable
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co-ordination aspect of the simultaneous modelling, and not its sharpness
property.

Section 3.3: The Experiment for Multiple Choice Constraints

We begin this section by describing a set of problems that will
allow us to empirically compare, our modelling for either/or constraints
with the standard textbook modelling. In our formulation, these mixed
integer programs have binary integer variables in special ordered sets,
where for each set of binary variables at most one is non-zero. However,
we do not incorporate special-ordered set branching.

Tﬁe scenario for the test problems involves a corporaticn which has
several divisions producing different end products. Each division has
the choice of different ‘echnolcgies in producing these products, and the
products produced by individual divisions are different. The technology
chosen affects the total output and product mix of each division. Since
the corporation must satisfy financial and capacity restriction
considerations which apply to all products produced, its goal 1is to
simultaneously select the desired technology for each division while
cptimizing corporate profits.

The following notation is used in the problem:

ND = number of Divisions.
NT(i) = number of Technologies possible for Division 1.
NP(i) = number of Products produced by Division 1.

NC(i,j) = number of constraints in Division 1 when using

Technology Jj.
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u :1 = vector of products produced in Division i,
;&;: of dimension NP(i)
;;3; s = contribution of Division i's products to the overall
corporate profit (a vector with dimension equal
to ii)
Ai = a matrix of dimension (CCx NP(i)) which is the
effect of Division i's output in constraints.
cc = number of common constraints which tie all Divisions
together.
Dij = A matrix of dimension (NC(i,}) x NP(i)) which
represents the technology of Division i when
Technology j is selected.
rij = The right-hand-side constraining Division 1, when

Technology j is chosen.
All matrices Ai' Dij are nonnegative and with no zero cclumns. The

general problem is depicted below:

T T T
(MIP) maX: €)X) * CpXp * +++ * “ND'ND
ST:
(Common
Constraint) AXx +AX + ... +tA x <b
1.1 “22 ND.ND .
(Division 1)
D <r or D X <r or ...
1,151 11,1 1,20 1,2
v x €r
Py nt(n®1 € TionT(d
o e R T T L e U S e e S
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(Division 2)
. D2,1x2 € 13,1 or Dy x; Sry 5 or ...
Bl -+« D2,NT(2)%2 € T2,NT(2)
(Division ND)
D X <r ' or D x <
ND,IND  _ND,l ND,2.ND . ND,2 or ...

Db, NT(ND)XND € TND,NT(ND)

X, > 0 for all i=], ND

~

We use two MIP Representations to model this problem. The first is
a standard procedure found in numerous sources, such as Eppen-Gould [7].
The second representation is from chapter 11 on modelling a finite union
of polyhedra.
Assuming the maximum production capacity of each division 1s finite
results in each constraint set being a bounded polyhedron, or polytope.

In order to model the problem using the standard method, the upper bound

*
vector X for variable x; must be known, so that one can calculate upper

~ ~

bounds ¥ij for each constraint (this procedure is explained in detail

~

later on). For now we define uj; as the value of the r.h.s. of each

constraint of Division i1, and Technology j, when all products of Division
*

i are producing at this peak value (x)

~

*
Pi,i%i = ui,j

~

Thus the standard representation (MIPS) is as follows.
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P I A WP AT T 2 oy gy W WS




78
T T T
(MIPS) max: il:l + Ez :2 + ...+ iND:ND
ST:
+ LN N
(Common) Al:l AZ:Z + + AND:ND < E

(Division 1)

D + - ) <
%ty T 1,1 Y

D + - <
1,250 9y El,z)zl,z )

+ ( )

D - <
LNTDX1 T YN T RN N T S NTeD
(5.0.S Constraint) 2),1 Y 2,2t ...t Z) NT(1) = 1

(Division ND)

D + (u -T

x )} <u
ND,I_ND  _ND,1 _ND,1 ND,1  _ND,l

D )z

(u

p,2%np * ‘Ynp,2 ~ Inp,2’2np,2 € “wp,2

D x + ( - <
ND,NT(ND) .ND = -ND,NT(ND) :ND,NT(ND))ZND,NT(ND) UND,NT(ND)

(s.0.S. Constraint) 2yp,1 *2yp,2 * +++ * 2np NT(ND) T 1
(Binary) z, 3 e {0,1) for all i,j
’
; i Fer the MIPS representation, the constraint and variable tctals
s ND NT(i)
o are: MIPS Constraints = CC + I L Nc(i,j) + ND,
b i=l  j=1
- ND
T MIPS Variables = T {NP(1) + NT(1)},
o i=l
N
'§::

0
.
.
.
e

e
. S
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. .
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ND
MIPS Binary = T NT(1).
i=]

The second representation is designed specifically for representing
the finite union of a set of polyhedra via integer variables, and is our
sharp representation from chapter I1I1. For our division/technology
problem, the polyhedra are actually bounded polytopes, and the bounded-

MIP representation becomes as follows,

(MIPP) max: T LI vee + cX x

SNt % ~ND_ND
ST:
(Common) AX +AX + ...4+A x <b
11 T22 ND_ND

X],1 % X1,2 % ..o * X NT(1) * X)

X + X + ... ¢ =
2,1, 2,2 XNT(2) %
X + X +

*»p,1 * *np,2 ¥ ¥ Xnp,NT(ND) T XND

(Division 1) Dl.lxl,l - rl’lzl’l <0

Pt ™, ara T TNt Z1LNTD

~

S (s.0.S. Constraint) z + z +

L T8 T U IRARRRRE DI} (O D I
[ .

- (Division 2) Dy,1%X2,1 = T2,122,1 <o

Nl .

@ .

oRE|
L
!

- - <
2 By Nt(2)%2,8m(2) T T2,nm(2)%2,N1(2) € 2
F:i; (5.0.S. Constraint) 22,1 + 22,2 % ... * 22 NT(2) = ]

D <0

ND,1%ND,1 ~ Inp,1%ND,1 %
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a0
T Division ND) .
o D - <
o ND,NT(ND) *ND,NT(ND) ~ *ND,NT(ND)ZND,NT(ND) © O
.:..:: (S.o‘ . A =
S. Constraint) zND,l + zm’2 + ...+ ZyD,NT(ND) 1
o (Binary Constraint) z. . ¢ {0,1}
A i,j
*\ﬁ Notice that the total variables and constraints of the (MIPP)
)
“~,
5 representation are, or can be, greater than for (MIPS). However, the
S number of binary variables is the same in both formulations. Here are
:i: some counts:
o0 ND  NT(i)
(MIPP) Total Constraints = CC + { L (I NC(i,j)) + NP(i)} + ND
i=] j=1
ND
(MIPP) Total Constraints = (MIPS) Total Constraints + ¢ NP(i)
i=1
ND  NT(1)
(MIPP) Total Variables = { £ ( £ NP(1)) + NT(i) + NP(i))}
i=] =1
ND NT(i)
(MIPP) Total Variables = (MIPS) Total Variables + [ ¢ NP(1)
i=] j=]
ND
(MIPP) Binary Variables = (MIPS) Binary Variables = [ NT(i).
i=]
*
The upper bound vectors xj used to determine the uj values for the

standard representation (MIPS), are data-dependent on the constraint

-}Et coefficients (Di J,). Rather than explain their calculation, a small
N : ’

g I3 . . 13 . .

oo example best decribes this computation. Suppose Division ] has the
=

SR

[ ]
4,

following situation,

r

S d < 4! +d'" x <r'
e ¥t 9% 1,150 7 4,2%2 ¢
S
e
YOG d, .x, ¢+ d. x_ €1 or d' x +d' x_<r'
P 2,1%1 % %,2%2 ° %2 2,151 % %,2%2 % 2
e
%
s
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Note that d is an element of D and d' is similarily an element of
k,L 1,1 k,2

, : T ' T 1
D)  of MIP. Likewise Ir;, x,17, and [r],r;]" respectively are ), 2nd

~

1.2 respectively of MIP.
]

. * * . .
To determine X, and x, we compare the following ratios;

x: = 111ax{min(rl/':ll,l r,/d, ) min(ri/dl,l ; ré/dé’]))

2° 72,1
* = : . . . : ' [ ' '
X, max{mm(rl/dl’2 : r2/d2’2) : uun(rl/dl'2 ;r2/d2,2)}
with all di,j and di,. non-zerc. If a dij or dij is zero, the

corresponding terms are omitted (recall that all matrices are

nennegative).

* » - -
We set each x, to its least upper integer bound (to keep within

integer data) and then find u, . as follows.
0
*k wok *
up 5= Di,j X, , uhere x. = rxi-‘

~ -~ ~ ~

In our example,

— *k *k
. e = 4y Ixp + (4 5)x
1,1
~c *k ek
Ul’z = (dz’l)xl + (dz’z)xz
- = *%k ' %k
R (a] Dx™ + (4] 5)x)
u =
~142 *k *k
Ui’z = (dé’l)XI + ‘dé'z)xZ

A sample problem with 3 divisions and 2 Technologies/Division, 3
products/Division, 3 constraints/Technology/Division, and 3 ccmmon

constraints is included in Appendix B,

e
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The idea behind our approach to the setting of upper bounds, is that
* &

the quantities X Xy, etc. are the best valid upper bounds, if we know

only that one of the alternative divisional constraints hold (but we

don't know which one). While the bounds for Uy p» Y} g €tc., may seem
’ ~t

~

extravagant, actually they are approached in the worst case.

Therefore, our procedure represents a reasonably “tight" bounding

method, which the user could quickly implement. The user might obtain
even better bounds by running many LP's, etc., but our method is fast and

does not use the large bounds which are encouraged by some authors for

the standard formulation.

It has been observed in practice, that excessively large bounds

.I...A.'.[I ‘r“l:)l !

make the standard formulation virtually useless in algorithms. Thus our

experimental results concern a different phenomenon, since we provide
reasonable bounds for the standard formulation. Moreover, the tctal
failure of sharpness in the usual formulation will occcur even if optimal
upper bounds are used.

We look at three criteria in evaluating the results of our

computations. We monitor the solution time of each sample, the total

number of nodes of the branch-and-bound tree solves as LP's, and the

ratio of LP relaxation optimum to the actual mixed integer optimum.

The solution time of each test problem is recorded in CPU seccnds.

S S

CPU time involves only the actual computer time used in solving the
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o
nd

problem, The time recorded excludes input and output times since these

N - f

are neglirible on large problems,

The number of nodes solved as LPs includes the actual number of

]
s

I ' .
'
o
el
P

LP's solved, including the initial LP relaxation. The larger the number,
the further “down" the tree, or the larger the branch-and-bound tree

becomes before an optimal solution is either be found, or verified.

. Finally the LP solution to optimal MJF solution ratio measures the
E;] accuracy of the initial LP relaxation to the actual MIP solution. This
\"‘_-‘_ .

e ratio may be very essential for problems in which only an approximate

solution is necessary, or for codes which use different branching rules,
variable choice rules, etc. than does ours.

Our test problems range from a 3 Division, 2 Technologies per
Division, 3 common constraints, 3 constraints per Technology, and 3
products per Division; to a 15 Division, 3 Technologies per Divisicn
problem with all other parameters the same. While relatively small,
these problems give significantly different results for all three test
criteria between (MIPS) and (MIPP). The largest representation ccntains
153 constraints, 210 variables with 45 discrete (binary) variables, of
which 30 are declared binary. The number of binary variables actually
used in our tests is less than indicated in (MIPS) and (MIPP). This is
accomplished by designating one variable of each Special Ordered Set
constraint as continuous. Clearly this does not affect the optimal
solution, but will reduce the number of binary variables.

The cost coefficients in the objective function, and all

constraint coefficients (for all A and D matrices) are randomly generated
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o integers with bounds [0,10]. The r.h.s. wvectors for the divisional

e constraints (r, .,) are calculated as,

P ]

~t s

F r. . = 2*(sum of row coefficients) + 1.

The vector b of the common constraints is set to @ *(sum of row
coefficients), and we use values a= 1,1, 1.5, and 1.9 in our study. For <
the value a = 1.9, the common constraints are virtually not binding, so ‘
that the time comparisons become essentially a comparison of the
modelling techniques.

RESULTS. The following tables ocutline the results of our test
problems. Table | contains information concerning problems in which the
common constraint & value is a = 1,1, Similarily Tables 2, and 3
respectively have a values of 1.3 and 1.9, respectively. Problems in
Table 4 are run using Martin's BANDBX code. For the Problem column, the
following notation is employed: n, - n, means that there were :‘
Divisions, with n, Technologies per Division. All problems have 3
products/Division, 3 common constraints, 3 constraints/Technology/
Division. The column headed (#) gives the number of problems in the
sample for this size; and the column (#]) indicates the number in the
sample which are solved by the {irst linear program.

The results support our expectation that the (MIPP) representaticn
requires fewer branch-and-bound subproblems (nodes) before obtaining an

optimal solution than the (MIPS) representation. At G = }.l, the average

node advantage of the (MIPP) representation ranges from 2 to 1 for the

!

smallest sized problems (3-2), to over 13 to 1 for problems (8-3). We

run two large problems (12-3) and (15-3) & limited number of times (only
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1. Multi-Division Problems
R.H.S. Multiplier (1.1)
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Nodes Ratio
B Problem| # Time MIPP MIPS LP/Discrete
T MIPP  MIPS |Avg. |max |#1lAvg. |max.[#]1|MIPP  MIPS
NN
o 3-2 |12] .625 0.39 [1.833] 3 5/ 3.75 | 7 { 1{1.0005 1.084
o 5-2 |12} 1.86  2.36 |2.5 | 6 | 2] 9.917] 19 | 0|1.0047 1.098
'. 8-2 [12] 3.579 11.518]2.166{ 5 | 2{29.08 | 65 | 0[1.0007 1.174
3-3 |12| 1.638 0.913[3.916/12 | 3} 6.67 | 13 | 1{1.0048 1.088
. 5-3 112} 3.154 6.933)3.75 | 7 | 2]24.25 | 57 | 0]1.00275 1.102
- 8-3 (12| 8.847 33.5 [5.16 |10 | 1]/69.25 |165 | 0[1.0008 1.1336
12-3 | 9]21.431 484* [4.11 | 9 | 0]140* | - | -11.00168 1.1466%*
15-3 | 4{29.1 399*% {5 6 | of382* | - | -11.00046 1.164%%

*Only one sample

Table

**The ratio 1s the LP over the Best Sclution found

2. Multi-Division Problems

R.H.S. Multiplier (1.3)

Nodes Ratio
Problem| # Time MIPP MIPS LP/Discrete
MIPP MIPS |Avg. |{max [#1]Avg. max. {#1{MIPP MIPS
3-2 18} 0.83 0.69 12.2 4 6 4.9 7 0]1.0066 1.142
5-2 18] 1.92 2.72 2.3 4 3 9.0 29 0(1.0009 1.118
8-2 18| 5.89 18.60 |2.7 7 3] 39.6 91 0]1.0013 1.174
3-3 18} 1.69 1.52 13.4 10 3 8.7 17 0]1.0032 1.133
5-3 18] 4.20 11.52 |3.9 10 11 38.2 }118 0/1.0011 1.174
8-3 18]110.99 123.5 4.5 18 4(194.7 {597 0[1.0017 1.116
12-3 3119.4 - 6.3 9 0 - { -11.00008 -~
15-3 3{30.5 - 4 9 il - - | -]1.00008 -
................ o _‘_Lf.-.-'.", e el e i e i
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N Table 3. Multi-Division Problems
m R.H.S. Multiplier (1.9).
S
e
e Nodes Ratio
m Problem| # Time MIPP MIPS LP/Discrete
o MIPP  MIPS |Avg. |max |#1|Avg. |max.|#1{MIPP  MIPS
;:'.-'-_’. i 3-2 8] 0.97 1.44 |2.0 3 2| 8.75| 14 | 0]1.0026 1.186
5-2 8| 2.32 10.42 |2.0 3 1] 32,75| S5 | 0|1.0006 1.2383
8-2 8] 6.60 64.92 |3.0 6 3/115.4 278 | 0]1.0034 1.1926
3-3 8] 1.59 4.13 [2.38 | 3 o] 21.1 | 31 | o[1.0088 1.1971
5-3 8] 5.57  41.77 {4.12 | 9 2|107.7 |337 | o}1.0041 1.2393
8-3 8/12.22 311.68 |3.63 | 7 1{407.4 762 | 0[1.0013 1.2283
12-3 3]25.0 325% 3.66 | 4 0]218% | - -]1.0004 1.1408
15-3 4[35.15 306* 7 14 0[270%* - -11.0008 1.315%*
*cnly one sample |
**The ratio is the LP over the best discrete found when stopped.
e e e e e L T Sl e e e T A Y
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one sample of each using the (MIPS) representation) to support our
premise that the node advantage increases with problem size. We actually
stop the computer before the (MIPS) model is solved to avcid excessive
computer charges,

At a = 1.9 the nodal comparison shows greater advantages for our
(MIPP) representation, ranging from 4:1 for problem (3-2) to over 100-1
on problem (8-3). Again, the single (MIPS) models of size (12-3) and
(15-3) are run for 5 minutes of CPU run time before we stop the code.
Recall that for a = 1.9 the common constraints have almost no effect at
all, and many problems solve as LP's in the newer (MIPP) formulaticn.

We are surprised at the dominance of the (MIPP) model with
respect to run time. Only the smallest problems are run faster using the
(MIPS) representation. At @ = 1.1, the time advantage reaches 4-1 fer
problem (8-3) and continues to increase for the twc larger samples (12~
3), (15-3).

Again at a = 1.3 and 1.9 the time advantage is even more
significant, reaching 12 to 1, and 25 to 1 respectively for problem (8-
3).

Table 4 summarizes problems solved using the BANDBX code. The
problems are all of size 10 Divisions, 3 Products per Division, 3
Technologies per Division, 3 constraints per Technology, and 3 ccmmon
constraints, The a value is 1.3 for all problems in Table 4. Feor the
five problems run using the LANDBX code, our (MIPP) formulation finds the
discrete solution much faster (in CPU seconds) and meore efficiently with

respect to branch-and-bound node counts. The standard (MIPS)
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. Table 4. BANDBX Code with RHS Multiplier (1.3)
! 10 Divisions, 3 Products per Division.
i~ TIME (CPU seconds) Number of Nodes LP/DISCRETE
MIPP  MIPS MpPP | MIPS | Ratio
Problem To To B
(10 Divisions)|LP Total| Lp |Total |Find]Total|Find|Total| MIPp |[MIPS
: 1 36.95{161.812.29{300* 8 9 2221325% [1.006 |1.34%*
l‘ 2 46.37| 54.6{1.84{258.1 | 2 2 141261 |1.0008|1.12
£
b 3 44.101120.4{3.13{300* 5 S 240(360% |1.003 {1.27%%
4 41.4 41.4(2.29{300% 1 1 711298 1 1.28%%*
5 &0.0*1 40.0/2.6 |300%* 1 1 52(324% 1 1.28%%

*did not solve the problem before computer shutoff
*%ratio i1s the LP over the Best Discrete Solution found
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formulation, as Table 4 shows, solves only one of the five samples within
our 5 minute CPU time limit. Incidently, ;e continue to run problem #]
for 10 CPU minutes without verifying an integer optimum. Because of the
time limit imposed, it is not possible to compare exact solution time or
node counts between the two formulations. Even so, comparing the number
of branch-and-bound nodes solved favors our (MIPP) formulation by at
least 30-1 for the worst case sample. This worst case result occurs in
sample #1 in which the (MIPS) LP/DISCRETE ratio is very high (1.34). The
significance of the (LP/DISCRETE) ratio is also evident in that our
(MIPP) formulation results in an LP relaxation solution within 1 percent
of the optimal discrete solution. On the other hand, the best
(LP/DISCRETE) ratio of the (MIPS) formulation is 1.12, which represents a
12 percent error. Incidently, the only problem solved using the (MIPS)
formulation also has the lowest (LP/DISCRETE) ratio. With the advantage
increasing with problem size, tremendous time savings seem possible using
our formulation for even small-sized industrial problems. We caution,
however, that the problems in our study are randomly generated, and do
not derive from an actual industrial application.

Of course, a more efficient computer code would solve our small
problems much faster, probably with fewer nodes. But the third test
statistic, the LP relaxation solution-to-mixed integer optimal solution
ratio, is invarisnt with respect to individual computer codes, heuristics
used, and whether or not a problem is solved to proven optimality.

For all a values, our (MIPP) representation has an initial LP

solution within 1% of the final mixed-integer solution value. On the

I.- - ".
.
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other hand, the (MIPS) approach errors by at least 8% on the average, and

the error appears to increase with problem size.

"#.‘._ o

Section 3.4: The Experiment for Piecewise-Linear Separable Programs

with Fixed-Charges

Y
v
"' A e

The scenario for these test problems involves a manufacturer which

8 Ay

\
[y

h

»
I
kY
o

must meet the demand of several separate categories of products. For
each category, the company assembles up to three end product categories,
each of which meets the specification of that category, and only that
category. Any combination of end products in a certain categery may be
used to meet the demand requirement of that category.

For example, a computer may be designed to meet certain
specifications. Several configurations of off-the-shelf intermediate
products may represent different end products, all of which meet the
same specificat.ons. In that case, all the end products fall into the
same category.

Each end product is assembled from a specific combination of inter-
mediate products. These intermediate products are common to all end
products. The intermediate products are high demand items each with its
own cost function. The goal of the company is to meet demand of each
category while minimizing its cost of intermediate products. We do not
include assembly costs, i.e. we take the perspective of the
intermediate-products' manufacturer.

The cost function of each intermediate product is a separable linear
function with three separate fixed-charges. For instance, the cost

function of the ith intermediate product is:

_____

BT 4 et A e e e e T
R e e e
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(1
2 Fo if x; = 0; (3.4.1)

‘ f..
: 01

= - * : -
£i(x)) < £0i* %1d it g B sy, dfx, e (BB, )5

- 3 3 3 . - 3 * 3
fOx M ‘lz* le M flx * (321 le) '21 *

- * - .

+ sli*xi; if x, € (O'Bli];

*
Bli* f

e We consider that the fixed charges are incurred when some technology
R reaches (physical) "capacity," and a second technology must be used. We

4 graph the function of (3.4.1) as Figure 3.1.
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Figure 3.1, Function f:l
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Notation for the problem is included below:

S -
k

NC -
d =
k

Yj -
NYt -
fl(xl) b
NXi =
n(i,j) =

93

set of similar end products meeting the specifications of
¥

category k. (Sk( < 3.
Total number of categories

demand of category k.

th )
The j  end product made from a specific combination of

intermediate products.

The total number of end products.

.th .
The i intermediate product

The cost function of the ith intermediate product.
Represented by Eqn (3.4.1) and Figure (3.1).

The total number of intermediate products.

Matrix representation of the combination of x.

required in the assembly of each yj.

The problem is now modelled as an optimization problem:

(Product Mix)

(Demand)

Fixed-Charge Problem
NXi
min: T f.(x,))
i=] 1
s.t.:
NYt
(1) I n(i,)d*y, = x. for i=1, NXi
. J b §
J=1
(1. Ly.»d for k=1, NC
. = Y5 29y
Jl:sk

all vars. > 0

(3.4.2)
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The variables in (3.4.2) are not required to be integral, as it is
assumed that the values of x; and Yij ore sufficiently large to allow

such a continuous “approximation.”

A standard method of representing a fixed charge problem involves

removing the fixed charges and separately representing the remaining

function., The economies of scale of each intermediate product results

in the remaining function being a separsble linear function (concave),
i.e,

> ;zi b s, for all i=], XXi, After the remaining separable

Y1
function is represented, the fixed charges are represented as a separate
MIP representation. Finally the fixed charge representation is
"added-on" to the separable representation. Thus the original fixed
charge problem is the combination of two individusl MIP-representations,

the models have been "Linked" together.

We use a common standard procedure of representing the separable

function, vhich we draw in Figure 3.2.

A 31

¢

3i

Figure 3.2, Separable Function
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To model the piecewise-linear function of Figure 3.2, we insert
into the objective function this term:
NXi (3.4.3.a)
Al . *s _*B K
ifl { lx slx 1i
% %B._ . L% . - .
A21 (811 Bl1 * 52i (321~. le) *

W3i*(a1i*Bys * 83" (Byy7Byy) + 53;*(By; - Byy))

The following are inserted in the constraints:

-(A] * * * - ™ ;
x, ( li Bli + Azi Bzi + X3i 831) 0 for i=],NXi (3.4.3.b)
AO. + Al. + A2. + A3, = ]
i i i i
AOi + Xli -eli 20 for i=],NX1
eli +ezi + 93i = ]

Qli, ezi. 93i 2 0 integer

This modelling (3.4.3) is not hereditarily sharp since e.g.,
93i = 0 does not' imply A3i = 0. It is simply one which is similar to
those in common use.

We represent the fixed-charge step function using two standard
techniques, (I) and (I1). By separately "adding" (1) and (I1)

representations to the representation in (3.4.3) above, we have two

commonly used MIP-representations of our original problem (3.4.2).
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For "Fixed Charge 1," we put into the objective function the

term:

NX1i (3.4.4.a)

%20 +f  %z] %22,

ifl{fo1 20, f11 zl1 + le 221)

and we put into the constraints:
- *
x; 83i in <0 (3.4.4.b)

x5 ’(331 - Bli)*zli < le for i=], NXi
- - *
x; (B3i BZi) z2i < BZi

in. zli, zzi > 0 integer

When (Fix-Charge I) is "added" to (3.4.3) we have our first
standard MIP representation, we call the representation (STANDARD 1), or
just (I). 1Incidentally, (3.4.4) is not sharp for general bounds and
fixed-charges. The second technique commonly used to represent a step

function adds an additional variable for each fixed-charge. This

representation (3.4.5) is sharp and is similar to the "8 method"
contained in Bradley, Hax, Magnanti [5). For “"Fixed-Charge 2," we put

into the objective the term:

NXi (3.4.5.a)
L {f_*20 + f %21 «+ f %32}
i=] 01 i 11 i 21 i

B N R
3% A N 0 W AT ITIEI I AP N PRI
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;' and we add in the constraints:
LY
N
o
N
:; x. (xli + xzi + x3i) =0 (3.4.5.b)
-" - *

xl1 Bli in <0
N3 x2; - (Bzi - Bli)*zli <0 for i=1, NXi
i x3. - (B,. - B,.)%22, <0
Ij i 3i 21 i

P . - .%2].

xll Bh zl1 >0
. . . @ . = L)% -
,j x2; (le le) 22, >0
Ej in, zli. zzi > 0 integer
N
AT
x By adding (Fix-Charge 1I) to the (3.4.3), we have the second
:ﬂ common MIP-representation of the original problem, which we call this
>,
= (STANDARD II), or (I1) for short.
4
.:; Notice that the (11) representation has the same number of integer
~
2 variables as (1), but more total constraints and continuous variables.
2,
: Therefore we expect that, unless the branch-and-bound node count of (II)
j: is much less than the count for (I), problems will be solved faster using
AN
': the first method (1). 1In fact, this turns out to be the case, showing
= that variable counts can sometimes overcome a deficiency of sharpness.
o Note that in both (I) and (I1), the fixed-charge variables zj; are
N
5 separable from the segment variables Gﬁi, which results (as we see below)
e in an unnecessary doubling of the number of binary variables. However,
0l
.¥ we cannot validly set, e.g. zoi = Gli. for possibly Ali =0=20, 0, =
' ﬁ A, = 1. This problem can be overcome by an ad hoc device in this
s,

specific setting, but such devices go beyond what one would do in using

‘.l
n the standard modellings as they have been described.
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A

We next use the extreme point form of our sharp representation to

model the entire function of Figure 3.1. Using our sharp representation

—'-; s'A.;

there is no need to separate the fixed-charges as before, and we actually

RLEE

[

-’-:

require fewer integer variables and fewer total constraints and variables
than either of the common methods.

We put into the objective function:

NXi , (3.4.6.a)
T{AL* .+ A2%(f  + f  +5 *B )+
i-l{ 11 01 b 01 11 slx 11
A3 j#(fg; + £)5 ¢ £5; +5);*By; + 8;%(By; = By;) +
Alzi*sli*Bli + Juzzis'r(s.u)w(nz.1 - Bli) +
* -
*321*’31 (33i nzi)}
and add to the constraints:
* -
(111.) (uzi + Azli)*nli + (azzi + Asli) Bzi (3.4.6.b)
+ x3zi* B3i =%, for i=1l, NX1
(1v.)
Al. = (All. ¢+ A12.) =0
b § ) § b §
A2, - (uni + Azzi) =0 for i=1,NXi
A3. - (A31. + A32.) =0
1 b § b §
xli + Azi + xai <1

Ali, Azi, ABi 2 0 integer

This formulation is worked in detail in Appendix A.

------
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We conclude with a fourth modelling also involving the two
separate parts of the function of Fig. 3.1. This modelling differs from
Standards I and II, in that both parts are separately done by our
"extreme point representation" (as described in Appendix A), so each part
separately exhibits sharpness and hereditary sharpness. This fourth
modelling is called "SEMI-~SHARP" (for lack of a better name!), and it is
in the comparison between SHARP and SEMI-SHARP that we isolate the issue
of modelling linkage. The other comparisons provide information which,
while involving linkage, also are compounded with other effects.

SEMI-SHARP uses this formulation for the piecewise-linear part of

the function:

NXi

L {12, + A2, + A3.s_.%B . (3.4.7.a)
i=1 i i il2 12

. .)%*g_.*(B,..~B. .
. +.(A221 + ABI) 595 (B21 311)

is added into the objective function, while these relations are added as

constraints for i=l ,..., NXi:

= o f o )
X, ()«12i + lei)nli + (X22i + X3li)82i + A32iB3i (3.4.7.p

All. + A12. = Al,
3 b § ) §
A2l . + 222, = )2,
i i i

X3li A32; = A3

........
----- - -
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l]i, xzi, A3i are integer
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Also, all variables in (3.4.7.b) are nonnegative.

SEMI-SHARP uses this formulation for the fixed-cost part of the

>
s
. -
l.-.-

function:

NXi
L {Glif

in] 0i* 92i(f0i + £..) (3.4.8.a)

11
+ 03, (fy; + £); ¢ £5.)]

is added into the objective function, while these relations are added as

constraints for all i:

L (GlZi + OZIi)Bli + (022.1 + 93li)82i + 632153:.L (3.4.8.b)

OIIi + 912i = Gli
021, + 022, = 02.

1 b 3 1
031i + 632i = 03i
Oli*OZi*03i<l

Oli, ozi, 63i integer

Also, all variables in (3.4.8.b) are nonnegative.
For this problem, the sharp representation requires one-half of the

integer variables than those required by either of the standard

representations,
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Table 5. Problem Sizes of Models.

Total Integer
Model #Constraints # Variables Variables

STANDARD I 10 * NXi + NC 13 * NXi 6 * NXi
II 13 * NXi + NC © 16 * NXi 6 * NXi
SHARP 6 * NXi + NC 12 * NXi 3 * NXi

SEMI-SHARP 11 * NXi + NC 19 * NXi 6 * NXi
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While the primary goal of these experiments involves "modelling
linkage" comparisons, we also compare a heuristic commonly used in
applications of mixed integer programming. This heuristic attempts to
reduce the number of branch-and-bound nodes solved in verifying a
feasible mixed integer solution within 2% of the optimal solution. The
heuristic fathoms a branch-and-bound limb if the current problem solution
is either infeasible, integer-feasible, or within 2% of the best known
mixed integer solution.

Several problems are tested using three different mixed integer
programming codes; Land-Powell, C. H. Martin's BANDBX, and CDC's APEX 1IV.

Test Problems

S

IO

The test problems generated have the following parameter
characteristics:
NXi = 5, 6, 10
NYt = 2*NXi
NC = [NYt/3]
d e [100, 200) integer, random

n(i,j) € [0, 5] integer, random

[\

*1i

8,; = RES*s);

*
84; = RES*s,;

RES = 0.8

[1,5] real, random

5 = {1,2,3}

s, * {4,5,6)
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5, * {remaining end products}

NC

B.= I(/|s|)* (I n(i,j)), integer
21 k=l kK jcsk
*
B (172 nn)l
*

Byi = 2'By;
f =

f .
11

2i = [P/Q1-p)* 5 ,%(B,, - B,,))

[p/(1-p)* szi*(Bzi - Bli))
f

p=20.1, 0.5
For our problems "p" represents the percentage of total cost which
is a fixed-charge. 1In other words, a low value of "p" results in the
fixed-charges being a relatively small portion of the total cost of
each intermediate product. Our calculations are based upon the following

principle. When the amount of x, used is st either B BZi’ or B

11’ 31’
then "p" represents the actual fixed-charge percentage of the total cost.

Clearly, at any point other than the three above, and xi-O. the fixed-
charge percentage of total cost will be greater than "p" so long as Byiv

$,;8nd 54; are strictly greater than zero.

i
To ensure each intermediate product is utilized, we eliminate zero
columns from matrix n. Notice that the calculation of ‘2i insures a

feasible solution with each x, at, or near, Bzi.
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We run problems with as many as 15 intermediate products (NXi=]5),

While not large problems, they are very difficult to snlve.

RS RAAASHEE - 17

n\: RESULTS:

Practice has shown the fixed-charge problem to be an extremely
troublesome problem to solve using the branch-and-bound technique.
Through our sharpness property, we know that the difficulty is caused by
the inherently poor "relaxed" approximation, even using the best possible
"sharp" representation. Our test problems show that the problems remain
difficult even using our sharp representation, and alsc that there
remains an advantage to these representations. Even the "best possible"
linear relaxation is evidently fairly inaccurate as an approximation to

the fixed-charge functions.

Tables 6-9 represent samples run using Land-Powell's branch-and-

bound Mixed Integer code. Problems of Tables 10 and 1] were run using
Martin's BANDBX code, and CDC's APEX IV was used for the problems in
Table 12.

Our first experiment is reported in Table 6, and does not involve

the SEMI-SHARP modelling.
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Table 6. Experiments Using Land-Powell, NXis=5.

L 4 ¢ DISCRETE/
SAMPLES P= 0.5 TIME NODES LP RATIO
8 SHARP 9.556 30.75 1.36
8 I 34.04 71.5 1.86
8 11 62.42 81.75 1.36

L 4 DISCRETE/
SAMPLES P=0.1 TIME NODES LP RATIO
8 SHARP 25.01 83.38 1.22
8 ) ¢ 65.61 138.25 1.48
8 II 106.29 131.38 1.22
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Table 6 shows that small problems are difficult to solve, and that
~ur combined representation is superior in all three categories. We also
notice that, even though the problems with small fixed-charges (p=0.1)
have more accurate initial LP values (22% versus 36% using our combined
model), the problems are actually harder to solve than those with
significant (p = 0.5) fixed-charges.

The degree of fixed-charges does not appear to affect the
computational advantage of our combined method (w.r.t. nodes and time).

Aside from the indication that the combined representation is
superior tc either standard method, it is interesting to note that the
Standard 1] representation appears to give sharp initial LP relaxation
solutions. The Discrete/L.P. ratios are identical to those of our sharp
‘representation (the L.P. solutions are identical), But after starting at
a much closer solution than Standard 1, the total nodes required is
virtually the same for both I and I1. Furthermore, even if the initial
(11) solution is sharp, it requires more nodes than our sharp
representation.

In our second experiment for these fixed-charge problems, we
retain the better of the two "textbook-like" formulations from the first
experiment (this was STANDARD 1), and run it together with our SHARP and

SEMI-SHARP representations. We also gather more data than before. The

results are reported in Tables 7, 8, and 9.
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Table 7. Seven Problems with p=0.3, NXi=5
Using Land-Powell.
Avg. Time
Avg. Time | to Find Total | Number
Formulation | to LP Optimum Time of Nodes | Discrete/LP
SHARP 1.3 sec. 14.3 18.7 63.3 1.26
1 2.0 8.7 41.3 84.4 1.50
SEMI-SHARP 3.8 30.0 -60.9 79.3 1.26
Table 8. Problems with p=0.3, NXi=6,
Using Land-Powell.
Avg. Time
Avg. Time | to Find Total | Number
Formulation | to LP Opt imum Time of Nodes | Discrete/LP
SHARP 2.0 sec. 22.6 36.5 94.8 1.32
1 3.0 40.3 120.2 176.6 1.56
SEMI-SHARP 5.5 25.2 129.2 119.2 1.32
Table 9. A Hard Problem, p=0.3, NXi=6,
Using Pand-Powell.
Formulation |Time to LP |Time to Opt.|Total Time | Nodes |Discrete/LP
SHARP 2.0 sec. 57.4 62.9 137 1.24
1 3.4 67.7 133 900 1.46
SEMI-SHARP 5.4 113.4 400 unknown| 1.24
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In Table 7, it is interesting to note that STANDARD 1 actually
outperforms SEMI-SHARP in terms of the “Total Time" criterion (as well as
the average time-to-find an optimum). However, as the number of binary
variables increase from 30 to 36 (NXi = 5 to NXi = 6), the gap in
performance noticeably diminishes. We conjecture that these problems
are simply too small for the SEMI-SHARP modelling to have an advantage.

The SHARP modelling is superior in the "Total Time" criterion,
although for the set of smaller problems (NXi=5) it is somewhat slower in
locating a optimum. The SHARP modelling also has somewhat fewer nodes in
the search tree, but this relative advantage is not of consequence. Of
course, the SHARP modelling has a better Discrete/LP ratio, but it is far
too large to permit heuristic solutions at reasonable levels of error (0-
4%) for industrial problems.

A harder problem with NXi=6 is separately reported in Table 9. 1t
is solved to optimality only by the SHARP formulation, although all three
formulations do find the optimum,

Tables 10, 11, 12, and 13 compare our SHARP and SEMI-SHARP
formulations. Table 10 compares three problems of size NXi=5 using
Martin's BANDBX code. The results in Table 10 indicate the dominance of
our hereditarily SHARP formulation over the SEMI-SHARP formulation. The
SHARP formulation is at least 3 times more efficient in node counts and 8
times faster in total CPU time.

Tables 11, 12, and 13 represent the larger (NXi=10, NXi=15)

samples., Table 1] contains the results using our "2% Heuristic," Table

......
....................
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Table 10. Three Problems With NXi=5,
Using BANDBX.
Time (CPU seconds) Nodes
To Find To Find Discrete/LP
Problem LP Discrete|Total |[Best Dscrete|Total Ratio
1 SHARP 0.55 3.19 6.82 15 25 1.38
SEMI-SHARP|1.68] 31.2 54.4 56 78 1.38
2 SHARP 0.58] 7.05 10.87 26 38 1.35
SEMI-SHARP|1.58] 49.7 95.87 81 133 1.35
3 SHARP 0.57] 1.7%4 4.67 10 19 1.23
e T e S R A e




o
wll
! 110
.
< Table 11. Six Problems With NXi=10
. With 2% Heuristic, using BANDBX.
S‘: Time (CPU seconds) Nodes
33 Discrete/LP
. : Problem To Find Total | To Find Total Ratio
< 1 SHARP 52.32 | 118.82 69 128 1.33
53 SEMI-SHARP|  380.6 600* 177 241% 1.33
[ 2 SHARP 24.2 400% 36 357% 1.31
O
oA SEMI-SHARP|  405.3 600% 192 268% 1.29
R 3 SHARP 36.6 | 267.6 48 229 1.26
d’
SEMI-SHARP|  246.0 600% 123 246% 1.26
4 SHARP 22.9 202.8 30 186 1.29
SEMI-SHARP - 600% - - No Discrete Found
5 SHARP 40.28 | 305.0 51 276 1.31
SEMI-SHARP|  346.1 600% 131 197% 1.31
6 SHARP 9.46 | 505.5 16 429 1.27
SEMI-SHARP|  341.3 600* 116 183% 1.26

*The Branch-and-bound Algorithm automatically stops after the cpu time
indicated to avoid excessive computer changes. Thus, Total Time and
Total Node columns summarize the conditions as the algorithm stopped.

Y
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Table ]2,

Six Problems With NXi=10
Exact Algorithm, Using BANDBX.

Time (CPU seconds) Nodes
Discrete/LP

Problem To Find Total | To Find Total Ratio

1 SHARP 57.37 128.99 74 139 1.33
SEMI-SHARP 5442 600* 237 25]% 1.33

2 SHARP 32.7 600* 42 427+ 1.31
SEMI-SHARP 407.3 600%* 192 244% 1.29

3 SHARP 37.6 315.5 48 274 1.26
SEMI-SHARP 248.7 600* 123 243% 1.26

4 SHARP 28.83 274.5 30 214 1.29
SEMI-SHARP 528.1 600* 241 262* 1.31

5 SHARP 90.48 346.4 82 266 1.30
SEMI~SHARP 369.12 600*% 131 243% 1.30

6 SHARP 22,12 418.1 26 310 1.25
SEMI-SHARP 330.8 600* 135 228* 1.25

*(see previous page)

PN DO IO




‘i
¢

.
o ¥
RN

eI
.

»
Iy
LI

-
S
Sl

..E‘ai
Ik

1 3

N
[ O R ]

e
o8 Ay,

& s

.-\. AT e .
o X e Cataa

112

12 contains identical problems run using an exact algorithm. To read the
table, notice that the column entitled "Best Discrete Solution fo:nd" may
not be the exact optimal solution of the problem. The 2% heuristic may,
and often times does fathom a limb of the branch-and-bound tree before
the actual exact optimum is found. Correspondingly, the "NODES TO FIND"
column indicates the number of nodes required to find the best discrete
solution found. The most prominent result of the samples is that the
SEMI-SHARP formulation is unable to solve any of the samples to
optimality, or even to within 2% of optimality (using the 2% heuristic)
within 10 CPU minutes of computer time. The next most prominent feature
is the difficulty of the problems even for the SHARP formulation. Nctice
the high (LP/DISCRETE) ratios. (We look at the relationship between the
LP relaxation proximity to the Discrete sclution and problem difficulty
in the next chapter).

We also find that the 2% heuristic has 8 very minor effect upon

problem solution. While finding the best available discrete solution

faster and more efficiently than the exact algorithm, the heuristic
algorithm does not always terminate as fast or as efficiently. Detailed
computer printouts indicate that when the heuristic causes a branch-and-
bound limb to fathom before reaching the exact optimum (problems #2, 5,
6), the algorithm may search more nodes before terminating with a soluton
guaranteed to be within 2% of the exact optimum,

Table 13 summarizes three problems run to exact optimality using
APEX 1V. The first problem is identical to problem #6 of Table !1 and

Table 12, Notice that the times are actually APEX Units and cannot be
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Table 13. Three Problems Using APEX IV.

Size| Time (APEX Units) Nodes Discrete/LP
Problem NXi=| LP To Find |Total |To Find Tota) Ratio
1 SHARP 10 2.25 92,0 ]192.) 137 315 1.25
SEMI-SHARP 4.15 | 617.0 |972.7*] 699 2113« 1,25
2 SHARP 10 [ 2.31 | 90.237] 186.9] 182 373 1.26
SEMI-SHARP 4,14 | 150.1 (2305* 135 2668« 1.26
3 SHARP 15 3.5 199.6 |[1458* 229 1791% 1.25
SEMI-SHARP 7.2 615.1 2489% 420 2003 1,25

*(see previous page)
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iii directly compared to CPU seconds, even though we have found APEX units to
;;% be virtually identical to CPU seconds in our experiments. Again, even
%%f though SEMI-SHARP produces an identical LP relaxation sclution as the
ﬁ SHARP formuation, its (SEMI-SHARP's) lack of hereditary sharpness causes
%S"} the code to search much longer to even find a feasible integer solution.

E{T? Since the SEMI-SHARP formulation does not solve the problems, exact

. comparisons are unavailable. However, the SHARP formulation is at least
7 times more efficient and over 10 times faster (problem #2). The third
problem is the largest, NXi=l5, and the results display the difficulty of
these type problems.

The results of our tests indicate a definite computational
advantage of our hereditarily SHARP formulation over both non-sharp and
non-hereditarily sharp formulations. The advantage appears to increase
with problem size, however the difficulty of the problems prevents us

from confirming our hypothesis.
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APPENDIX A:
TWO FORMULATIONS FOR BOUNDED-MIP REPRESENTABILITY

Suppose that a finite union S of polyhedra § = Pl U...uU Ps
satisfies the condition B) on recession directions, from the Theorem of
Section 1. Then by that Theorem, S is bounded-MIP representable. 1In fact,
in chapter II we provided two mixed-integer formulations for the set S: the
"polyhedral" form, and the "extreme point" form. The "polyhedral foram" is
given as follows. If P, = {x | Ah x > bh} for h=l ,..., s is a polyhedral

representation of P_, then S is represented by

h

s
x= Ix
h=1

h (al.1)

h h h
Ax >b A, h*l ,..., s

s
IA =1, A >0 forh=1 ,..,5
p=t P h

Ah integer

(A1.1) is the form given by Balas [2] for the constraints of a
disjunctive program. 1t is also, after algebraic simplifications, the dual

to the linear system of the co-proposition of a statement

t
v (Ahx > bh) in "disjunctive normal form" (for definition, see [13]) where
h=]

"V'" indicates the "or" connective, or disjunction (for a proof of this fact,

see [10}).
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Let us consider first a "distribution center" formulation. Here,

SN .

j:}: if any flow xj from the center (a € j < t) is positive, the center must

RO :

;:;: be built, and so a "fixed charge" of ¢ > 0 assessed. Using the variable 2z

i for the charge, we have t=2 and S = Pl LJPZ, where Pl = ((z, LIRERY xt)lz |

> 0 and all x; = 0}, Py = {(z, X} ,.uey %) | z ¢ and all 0 < %, < Mj}.

Indeed, S = epi(f) where

1 if any x, > 0, where all x, > 0,
F(x, J000, x ) = 3 and xj < Mje (A1.2)

1 t
0 if all xj =0

We seek a modelling of the function f, assuming a minimizing objective

function in which +f occurs.

To obain on sharp modelling, we utilize the polyhedral form

(Al1.1), and we obtain:

1 i 1 2 2 2

(z, X) seees xt) = (z, X) seees xt) + (z , X] seees xt) (A1.2)

1 2
z O-Xl z > Azoc

1 2
x1 = 0°2;, 0 < x; € XM

1 2
x, OOAl, 0« xt < AZ.Ht

A A, =, A 20, 3 20

Al and AZ integer

Upon simplification (which is optional for use in algorithms, but will make
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the modelling more perspicuous), we have xj - xj for all j, Azoc >z >z,

and (Al.2) gives constraints

0 Cx, €M, 2 (A1.3)
J J

s,

where +cez is to be entered in the (minimizing) objective function. We note

that (Al1.3) is different from the formulation X bt x € Mez, with M =

M+ M, that is often suggested, and which is not sharp.

The "extreme point" formulation requires that we write each
a(h),h

,...,V 'y

polyhedron P, as the sum of the convex span of points vl’h
which may be dependent on h (and which may be extreme points, for example)
1 B .
and a convex cone generated by elements w ,..., w which are to be
independent of h, While the condition, that the Ph all have the same
recession directions, is not satisfied by all unions § = PU ... LJPj
representing S, it is satisfied by some union, when S is bounded-MIP-
representable, as noted in Section 3,2,

The extreme point formulation of § is

s alh) hi 8 ] (al1.3)
x= L T AWV ‘s £ oW
h=l i=] 1 j=1 3
xh. > 0, 9. >0
i j
a(h)
A o= I .
h i=1 hi
8
L A =1
p=} D

all Ah integer
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The extreme point formulation has, generally, fewer constraints but more
variables than the polyhedral formulation. From a practical perspective,

the extreme point formulation cannot be used when any one of the polyhedra

is a "large dimensional cube," or any other polyhedron with a huge number of

extreme points. For example, we would not use it in the distribution center

problem, with t very much more than t=3 or 4, since P_ is a hypercube.

2

In function formulations where S = epi(f) and f is defined only on

a bounded domain, the sole recession direction is the (upward) vertical one.
Since the function is to be entered into a minimizing objective function, at

8 minimum the recession direction is not used, so in our formulation work we

‘.¢ 2 . .
:ixi often ignore 1t.
b“sj We conclude by indicating the derivation of the extreme point
%)
formulation of the function of Figure 1. We have § = epi(f)
A = PILJ P2LJ P3LJ P,, where the polyhedra and their extreme points are as

‘ follows:
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Polyhedron Extreme Points
P = {(z,x) | z >0, x =0} (0,0) X
P, = {(z,x) ] 0 ¢ x ¢ By (£4;40), A
z > fy, + (sli)x} ”oi"'li)”’li)' By;’ A,
Py = {(z,x)] Bj; € x By, (fo, *+ £15 % (3,,0(8,0,(8, ), A,
z > £, + fli + (sli)(Bli) (foi + fli + (sli)(nli)’
+(x-B);)(s,.)} (5,4)(By;-By;)s By;) A2
P, = {(z,x)] By; € x € By, (foi*f134E0:00811)(Byy)
z > £ ¢+ £10 ¢ £ ‘(SZi)(BZi-Bli)' Bzi), A
*(sli)(nli) (fOi+fli+f2i+(sli)(Bli)
+(s3i)(x—32i)} +(s3i)(33i-Bzi), B3i) A3y

An algebraic computation of the extreme point from (Al.3) from the above

data, will yield the formulation (4.6) used in our experiment.
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SQ JLLUSTRATION OF THE CALCULATION OF UPPER BOUNDS IN THE
':\ STANDARD FORMULATION
- Samg}e = 3 divisions
2 technologies/division
3 const./division/tech.
3 common constraints
3 products/division
max:
x] + 9x2 4+ 8x3 4+ 9x4 + JOX5 + 10%6 + 6x7 + 4xB + 7x9
S.t.:
(cemmon) (1) B8x1 + 9x2 + 4x3 + 2x4 + 3x5 + 8x6 + 1x7 + 8x8 + 8x9 € 103*
(2) 5x) + 3x3 + 7x4 + 6x5 + 6x7 + 8x8 + x93 € 73*%
(3) Ix] 4 3x2 + 3x3 + 3x4 + 5x5 + 7%x6 4+ 7x7 + 9x8 + 7x9 € 9]*
Division 1
(4) Bx1 + 5x2 + 7x3 <€ 41 (7) 7x] + 1x%x2 + Bx3 € 33%%
(5) 4x] + 3x2 + 7x3 ¢ 29 or (8) 8xl + 2x2 + 8x3 < 37
(6) 2x) + 4x2 + 9x3 <€ 3] (9) 7%x2 +« x3 <17
(10) 8x5 ¢+ 7x6 ¢ 27 (14) 5x4 + 8x5 + 4xb < 35
(11) 4x5 + 2x5 + 6x6 € 19 or (15) 3x4 4 2x5 ¢ 6x6 € 23
(12) 1Ix4 + 6x5 +« 2x6 € 35 (16) 8x4 3x5 ¢+ 3x6 € 29
L— e— L —
r — —— ———ty
(18) 4&x? 8x8 ¢+ 7x9 < 39 (21) 3Ix7 + 8x8 <23
(19) 6x7 + 8xB + 3x9 ¢ 35 or (22) 8x7 + 3x8 + 8x9 < 39
(20) Sx7 + 8xB + 6x9 ¢ 29 (23) S5x? Ix8 + 3x9 ¢ 23
po— amm— l—- e

seocy [ Tk

* r.,h.s. = a*(sum coeff) ¢+ ), here a= 2,
*%* r h.s. = 2 (sum of coeff) + 1.
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For

x(1) = min

x(2) = min

j=2

x(1) = min

x(2) = min

j=3

x(1) = min

x(2) = min

our example, we can put these bounds in Division 1:

E_g_l, L%_J}.S R(1) = max {5, 64} + 1 =6

j=1
{

The Upper Bounds are:

y -

|

29

37/8 |»

‘e

31

L

UB(4): 8(6) + 5(8) + 7(5) = 123

UB(5): 4(6) + 3(8) + 7(5) =

83

UB(6):2(6) + 4(8) + 9(5) = 89

=

-J] = 7 R(2)
n/z-'} =2

}=3 R(3) = max {3,4)+1 =35

121

= max (7,2} + 1 =8

UB(7):7(8) + 1(8) + 8(5) = 90, etc.
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In the Standard Form, the Division Constraints become:

Division ]

... .A,q
.
KRN e
. " . IR A

* %%k
(1) 8x] + 5%x2 + 7x3 + 82:1* €123 (4) 7x] + Ix2 ¢+ Bx3 + 5722 < 90
i (2) 4x1 + 3%x2 + 7x3 + 54zl < 83 (5) 8x] + 2x2 + 8x3 + 6722 < 104
(3) 2x] + 4x2 + 9x3 + 5821 < 89 (6) + 7x2 + 1>3 + 4422 < 61

(7) z1 ¢+ 22 = |

where ** coefficients of discrete variables are found as below:
82 = (Upper Bound - R.H.S.) = (123 - 41) = 82
( 83 - 29) = 54

( 89 - 31) = 58, etc.
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CHAPTER 1V

ONE TEST OF THE PROXIMITY OF THE LINEAR RELAXATION
AS A GUIDE TO PROBLEM DIFFICULTY

Introduction

The purpose of this chapter is to add further confirmation to a
commonly accepted viewpoint, that the proximity of the linear relaxation
is a gauge of problem difficulty.

From our earlier results we see that the Multi-Divisional

problems, whose LP relaxation optimum is within 1 percent of the integer

optimum, are much easier to solve than the fixed-charge problems whose
LP relaxation optimum is not within 25 percent of the integer optimum.
In this chapter we present two classes of problems, of similar
construction, whose LP relaxations are very dissimilar in terms of their
pProximity to the convex span of the integer sclutiuns. We then compare

solution difficulty of the two problems using Martin's BANDBX system.

The first class of problems is a slight variation of the well-
known fixed-charge problem. The second class of problems is of the
fixed-benefit variety, in which a benefit is received if a product is
utilized.

Both problem sets involve "minimum usage levels" which activate
the fixed-charge or benefit, as well as upper bounds on the value cf the
variable. These two parameters determine how close the LP relaxation is
to the MIP formulation. 1In the 'usual' setting of these parameters, the
ussge level is much smaller than the upperbound. For usual scenarios,
AN TN L S
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u . the fixed-charge LP relaxation feasible set is much larger than the i
;}t feasible set of the MIP formulation, even when the best possitle (i.e.

?}5 sharp) formulation is used. On the other hand, the LP relaxation
feasible set for the fixed-beuefit problem is usually nearly identical

to its integer feasible set., However, by altering the minimum usage

level so that it is much larger than usual, the fixed-benefit LP
-' relaxation feasible set becomes noticeably larger than its MIP feasible
set. Thus we are able to test how problem difficulty varies as the

j;f differences between the LP relaxation feasible sets and MIP feasible sets

are altered. Since we proved earlier that the LP relaxation feasible set

of any SHARP formulation is exactly the closure of the convex hull of the

MIP representable set S, we are, therefore, testing the effect on problem
difficulty as the size of the convex hull of a MIP representable set ]
changes,

We remark that we use both minimum usage levels and upper bounds in
our problems, since the fixed charge problems require bounds, while the
fixed-benefit problems require usage levels, in order to be formulated as
MIPs. By giving both problem sets both usage levels and bounds, they are
more comparable,

Problems
———————

The general problem description for both the fixed-charge prcblem

(FC) and the fixed-benefit problem (FB) have the mathematical form,

. . - .« e T P . IR e e e e DI
R L L LA L P P AT et LT T et P IR
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min: I (egx, ¢ £i(x.)) (4.1)
PSR I TR I

s.t.: Ax > b

>0

%

where f.(x.) is a nonlinear function defined as follows. For the fixed-

charge case,

0 if x, =0

(FC) f.(x.) = J for all j (4.2)
3 ] s, if 8, <x, <M,
j S T T {
and for the fixed-benefit problem, \
|
|
. |
0 1 x,. =0
] for all j. (4.3)

(FB) f.(x.) =
J -s. if 8. < x. < M,
J ) ] )

In both (4.2) and (4.3), sj is nonnegative, Gj is strictly greater than

zero, and Hj is greater than Gj.
A typical example is the product mix problem in which the objective
is to minimize the cost of resources while satisfying certain quality-

The cost of the rescurces involves a

In the FC

control, or demand constraints.

linear portion (c.x.) as well as the nonlinear fj(xj) term.

case, an additional charge of S5 is incurred if the amount of resource

j(xj) falls within the IGj, Mj] interval, In this case, Gj is the

minimum usage level and Mj is the maximum usage level. 1In the FB case, a

benefit, or negative cost (-sj) is received if resource j falls within
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<
Ei the (65, Hj] interval. Note that a value of xj strictly between 0 and §
J
o is not permitted.
b
< n
L Defining the set S. as epi(f.(x.)), end S = (J §., we see that §
: is MIP representable, The graph of Sj for both problems follows.
i £ (x,) 7B
% 491 ¥ | 5%
" ! , I
N !
s . - - l l
J
§ M,
- ey X s~ -~ x
8 M h| j
3 j | I
! l
-S ., - a
J

Figure 4.1
Fixed-Charge vs. Fixed-Benefit

Using the "extreme point" sharp modelling for the FC problem we adc

to the constraints in (4.1),

x, =0, 6. ¢ O M. (4.5)
J 1 ) 2) )

o (FC) A. =0 .+ 0.,

J 1 2)
A.¢c{0,1),0..,0.0

r @ 3 fo, 1}, )" "2j
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and replace fj(:j) in the objective function with the term ‘5"5‘ The
modelling in the FB case is identjcal except (°Aj'si) is vsed in the

objective function. Thus we have two very similar modellings whose LP

relaxations are complementary in that the closer the proximity of the FB

1P relaxation to the original MIP set, the worse the proximity of the FC

LP relaxation is to its orginal MIP set. A Picture best describes this

notion.

FC ' FB
‘ ﬂ ?//
///// 8, /'////i:q
- . J s ;s J X,
M v X S J
GJ Mj J //////,
-8, /////i//////
Ii
{
Figure 4.2

L.P. Relaxations (Convex Hulls)
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i!i Notice the shaded ares representing the LP relaxations of both problems.
;;: First notice that the difference between the original repres:ntable set
f:-' Sj (4.4) and the LP relaxation (4.6) is much greater for the FC problem
Iij than the FB problem. Thus, if our conjecture is correct, the typical

fixed charge problem is more difficult than the typical fixed benefit
problem., Suppose we depart from the typical case in which Sj is small
with respect to Hj' and incresse the value of the minimuw usage level to

one-half of the maximum usage level. The LP relaxations now become,

FB
'} 1 FC 4 N
| | 4
] I i\
4 P,
sj B |
' |
B R
- ¥ —pire) X
3 ¥ 3 | g
]
1
=5 .4 V———l
J
;J
<

P

.l 'l .'

Figure 4.3
Effect of Minimum Usage Level
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Notice, the FC LP relaxation is unchanged while the FB LP relaxation does
change. More importantly the set Lj = (clconv(sj) - Sj), while larger in
both cases as 55 increases, its size increase is larger in the FB
problem. Therefore we expect that as 6j increases, the computational

advantage of the FB problem may decrease. Our tests confirm our

expectations.

Experiments

We run several samples of the problems described by (4.1), 4.2),
and (4.3) and modelled using the “extreme point" formulation (4.5). We
solve two different sizes of problems, the first (I) contains 10 original

variables and 20 original constraints (i.e. A matrix ls 20 x 10), the

second (I1) centains 20 variables and 40 constraints (A matrix is 40 X
20). Using the extreme point formulation, the problems of size I, have

50 constraints and 80 variables, 20 of which are binary; size II problems

have 100 constraints, 160 variables, of which 40 are binary variables.

For each problem we randomly choose each aij as an integer between
n

1 and 10. Each bi' (i=],n) is selected as b. = jfla.., thus xj =1 feor
all j, is a feasible solution. Next, we randomly choose each cj as an
integer between 5 and 10. For some problems, the fixed-charge (benefit)
sj 1s 30% of the total cost of setting a variable to one, i.e. sj =
0.3(sjocj). For other problems the percentage of the fixed-charge
(benefit) is increased to 50% ot the total. The maximum usage level (Mj)

i1s 4.0, while the minimum usage level (Gj) varies between 6J = 0.1, § =

J
1.0, and Gj = 2.0. Thus, the minimum usage level varies from 2.5% to 50%

of the maximum usagze level.
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After the problem parameters are thus randomly chosen, we create a
Pair of problems. In the first member of each pair, the parameters are
used to construct a fixed-charge problem as described above. The second
member of each pair is made into a fixed-benefit problem with exactly the
same data.

Along with the usual statistics, we compute the ratio of the fixed-
Benefit/Fixed-Charge solution times. The results are summarized in
Tables 14 through 16. Table 14 summarizes problems of size I and I1I,
with a minimum usage level of 2.0, and a fixed cost prcentage of 30%.
Table 15 represents problems of size I and II with minimum usage levels
of 1.0 and fixed cost percentage of 30%. Table 16 summarizes problems of
both sizes with minimum usge levels of 0.1 and a 50% fixed cost
percentage.

As we predict, the FB problem solves faster and more efficiently
than the FC problems. But the results are not as dominant as one might
expect, First, notice that the (LP/Best Discrete Solution) ratio is over
0.9 for both FB and FC, thus the problems are "easy" fixed-cost problems
to begin with. Problems with lower ratios as in Chapter 11I may produce
more dramatic results. From Tables 13 and 14 we find that when the
minimum usage level is significant with respect to the upper bound, the
FB problems are not much faster, but are more efficient, In fact, in
some instances, the FC problem solves faster even though it requires mcre
nodes to solve the problem than its FB counterpart. As our Fig.

4.3 suggests, problems with small minimum usage levels are easily

solved as FB problems (see Table 15).
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An interesting discovery among all samples is that the FB
representation is harder to solve as a linear program than the fixed
charge problem. We believe this is partially due to the fact that the cj
values are at least as great as the zj coefficient (sj) values.

Therefore in the FC relaxation problem, once the Ax » b constraints are
satisfied then the Ajvariables are set t:o.A.j = lea. But for the FB
problem, the code will initially try to set all Aj variables to their
upper limit of one, to obtain the benefits, which forces the xj values to
be at least the minimum usage level. But, since increasing the
x.variables adds the relatively large cj costs, the cocde then re-adjusts

the Aj values, which tends to increase the number of iterations in the LP

problem.
Table 14, Fixed-Charge vs, Fixed-Benefit
Gj = 2,0, % Fixed-Cost = 30%
Using Martin's BANDBX Code
LP/Discrete
Solution Time (CPU) NODES SOLVED Solution
Ratio
Problem FC FB FB/FC FC FB FC FB
Size LP TotalliP Total Ratio|To To
#) Time {Find Total]Find Total
1 (5) |1.44 31.612.71 24.2 0.76 | 31 50 17 30 {.952 |.979
11 (2) |B8.55 600%|27.5 590.3%*] ? 152 206l 138 181l .9702 .9882

*neither problem was solved within 600 CPU seconds
**only one of the two problems solved within 600 CPU seconds
ITotal Nodes unknown as problems were not completely solved.

2Best Discrete Solution found at time of shutoff is used in ratioc.
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Table 15. Fixed-Charge vs., Fixed-Benefit
§. = 1.0, % Fixed-Cost = 30%
Using Martin's BANDBX
LP/Discrete
Sclution
Solution Time (CPU) NODES SOLVED Ratio
Problem FC FB FB/FC FC FB FC FB
Size LP Total|LP Total Ratio|To To
") Time |Find Total|Find Total
1 (3) J1.43 23.113.37 9.42 0.41 32 37 8 9 {0.96110.995
1T (2) §8.35 337.1({23.8 208.3 0.62 67 117 43 §2 10.976|0.997

Table 16. Fixed-Charge vs. Fixed-Benefit
8. = 0.1, % Fixed-Cost = 50%
Using Martin's BANDBX

LP/Discrete
Solution
Solution Time (CPU) NODES SOLVED Ratio

Problem FC FB FB/FC FC FB FC FB

Size LP Total|LP Total RatiolTo To

(#) Time |Find Total|Find Total

1 (3) |1.23 S51.2]2.81 2.93 0.06 89 95 1 1 10.933] 1.0
11 (2) 16.92 432.4124.6 24.8 0.06 81 167 1 1 ]0.969] 1.0
11 (2) 16.92 432.4]24.6 24.8 0.06 81 167 1 1 {0.969} 1.0
: _ ...; ................. R _,._;,_"_-,' et ';";';;;'.~;';';"'n'_&' Dl ‘ :.\’ _‘.-‘:.-_-.-:::..;,-_ .A_':(-’: _-\ -?:.. ~~.:..\_.
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CHAPTER V

TWO TESTS OF PROPOSITIONAL LOGIC PROBLEMS

Introduction

The purpose of this chapter is to explore the effectiveness of our
Sharp modellings, and "standard" modellings, in problems of propositional
logic (see, e.g. [2) or [35]) for a discussion of this logic).

The first test is entitled "Satisfiability Testing." 1In this
experiment, we are given a formula in conjunctive normal form. (i.e. as
a conjunction of @& disjunction of literals - a literal being a
propositional letter or its negation) We wish to determine whether the
formula is satisfiable.

The given information for the second experiment is a set of

implications, K, + L,

i for i=l,...,n where each Li is a disjunction of

literals, and K; is a conjunction of literals in some experiments, and a
disjunction of literals in others. We wish to determine whether the set
of implications imply that a particular literal is true, provided certain
other literals are all given as true. The literals last mentioned are
part of the data of the problem.

Our interest in satisfiability testing lies in its role as an
important problem type for theoretical analysis, particularly the NP-

completeness theory. Our interest in implication testing lies in the use

S »
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of implications in the "expert systems" of artificial intelligence (14,
| 4

15).

.‘-. .
ot
-

.

4
[ 4

-

In forcing certain letters A yeee A, to be true and a letter B

to be false, with all implications K, *1; (i=l,...,n) true, and

7 %

3
DDA

g

determining if the overall result is consistent, we are in fact

v . .
}"I.‘

ascertaining if B is forced to be true when the "data" on Al seees A are

£s forced and the “production rules” K; *L; (i=l,...,n) are valid. In

v

r

ier

actual expert systems, more complex relationships are modelled than those

"n :.‘\4

which can be represented by propositicnal logic, but it is the expert

.‘I

system paradigm which motivates us.

In the problem studied here, the MIP code is used only as a
consistency tester (i.e., there is no criterion function).

Both propositional logic experiments are MIP representable, in
fact, both can be modelled as pure integer programs. However, it is
unnecessary to actually declare all variables as integer, thus the
problems we solve are mixed-integer programs. One of our initial goals
was to develop an efficient branch-and-bound algorithm to solve these
problems, but we are surprised to find that standard branch-and-bound
code (Martin's BANDBX and APEX IV) solve the problems very effectively.
In fact, as shown later, we are forced to alter our random generator to
artificially create difficult problems in order to compare the
computational effort of different modellings used.

Both modellings solve the problems so efficiently that we stop
comparing modellings and concentrate solely on creating difficult problem

instances, 1.e., for satisfisbility problems of the size we
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n study, there is no advantage to the newer methods, since random

S propositional formula are easy to decide by branch-and-bound.

SE}. Problems

N The propositional logic formulas for the satisfiability

!!! _ experiments are developed in the following manner. Given the total

%;i number of literals to choose from, &, the number of literals per clause,

::2: _ s (s < 2), and the total number of clauses in the formula, ¢, we randomly

? generate ¢ clauses of size s in the £ literals and test whether the

ES;E resulting formula is satisfiable. For instance, if g=5, s=2, and c=3,

ol - the following formula may be randomly generated, %
:f: K= (A, V~A) AAVA) AAVA) A VA, (5.1)
ot

vhere '"V" indicates "or,"” "A" indicates "and", also ~Ai implies negation
of the literal A;. To model the formula as a mixed-integer program, we

assign binary variables to each literal of the formula such that if A is
true then its associated variable x; = 1, similarily if A; is false then

x, = 0. Negation of literals, “Ai’ are represented as l-xi. To model

(5.1) we first model the individual clauses, i.e. (Al VA, ... v A3).

Modellingrthe V-connective

For an expression of the form

A=AVA V... A, (5.2)

where each Aj has been assigned a variable xj and a variable x is

assigned to A, a non-sharp modelling follows:
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x > (xl X, b xt)/t (5.3)
x < xl + x2 +.0.4 xt.
Our Sharp modelling of the expression is;

x > xj for j=1,t (5.4)

X € x,+ X, +...% X_.

1 "2 t

The non-sharp model (5.3) is similar toc some representations which
have been used (largely unsucessfully) in practice.

The model (5.4) which we are calling "Sharp" here is similar to
one used successfully in practice in a setting where the logical

constraints were part of a much larger group of constraints (Johnson,

et al., [31], and has the same character as the "disaggregated"

constraints for & distribution center with a fixed-charge [Graves &
Geoff., 19]. 1In both settings it is crucial to successful

implementation.

We call (5.4) "sharp" by extension of terminology. The set S to
be modelled has the form S = P| US”, where P, = {x, xl,..,xt)l
x=x = .,..=x = 0} is a polyhedron and §° = {(x, XyseonsX, | x =1,

Ixj » 1, all xj €{0,1}} is a bounded-MIP representsble set (in fact, the

. t .
union of 2 polyhedra). We relax S to the polyhedron

P2 = {(x, xl

that P, = conv (§”)) and then we model Pl(J P, by the polyhedral method

,....xt) | x =1, Exj 21, 0 < xj <] all j} (note that

as follows:
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™~
e 1) (2)
P x=x ' +x (5.5)
! (n (2) .
:ﬂ: XJ xj + xj all j
" W o @ _
I:".': x 0. l X .Az
- m 0 @
e Xj 0'*1 -] J .D(J ’ '12
R J
- (2) ,
0<xj <10A2 all j
. . . (2) (2)
upon simplification, we have x = 0 + A, = A2, x; = 0+ X; =Xy, and
(2)
we note that x; = x5 < A, = x. This gives (5.4) which is sharp for

the given relaxation P, UP2 of S = P1 Us-.
All literal variables (xj) are declared binary, while the formula

variable (x) is not declared integer even though it is forced to integer

values. Notice our Sharp modelling involves (t+l) constraints while the
non-sharp model requires only 2 constraints per expression.

Modelling the "A" connective. For an expression of the form:

= .6)
A Al A Az A ... A At (5.6

where each literal has already been assigned a binary variable xj, and A

is assigned a variable x, the model is developed in the follcwing manner.

Since (5,6) is equivalent to

..... R I S R
PP PR W U VAR PR W)
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~A-~A ~ V...V'-A
1V 4, ¢’

we use the "or" connective modellings replacing x with (l-x) and x. with

(l*xj). The nonsharp model is:

t
Ix, >tx (5.7)
Jsl J
t
x ¢+ Ix. < (x-13. (5.8)
The corresponding Sharp model is,
x € xj for j=1,t (5.9)
t
-x + I x, < (t-1)
j=1

The sharp modellings (5.4) and (5.9) are based upon our polyhedral ferm

mentioned in Chapter II. To clarify this modelling, the expression (5.2)

can be expressed as,

x =0 x =]
xl =0 or 0« xj <1 for all j (5.10)
t
. I x, 21
. j=1 3
x =0
t
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with all variables non-negative. Assigning Al as the multiplier for the

left side of (5.10) and A, as the right side multiplier, our polyhedral

form for MIP representations simplifies to:

AE {O,l},
which simplifies to (5.4).
Combining the mecdellings of the "V'" connective and the "A"

connective allows us to model conjunctive normal form formulas and, 1in
fact, any propositional expression in 'V', "A," and '~.' We next

.

illustrate this with the formula (5.1)

The non-sharp representation is,

(5.11)

X, * (l-xs) > Xe

X, + (1-x5) < 2x6

1

. .
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X)s Xy, X, X BTE binary

all variables > 0.

In the above, Xg» %, Xg are variables assigned to each of the clauses of

the formula, and x_, is assigned to K. Therefore, once the constraint

9

X = 1 is added to the constraint set (5.11), the formula (5.1) is

satisfiable if and only if the constraint set is consistent.

Modelling the "+'" Implication. The implication testing experiment

requires all implications (xi * Li) to be true, with (Ki + Li) equivalent
to (~ K, Vv Li)' Therefore each implication is modelled as an "V"
connective. We next work an example.

The implication

(~AABA~C) +~D (5.12)

is transformed to the disjunction

AV~BVCV~D (5.13)

(since (~AABA~C)is ( AV ~BVC) ). Then (5.13) is modelled

as
1]
. -‘4. . .\’ Coe o -.'.\_-v . .~“ ., -'.'-.{‘ e -._".,.~..‘ P I .'..-"‘.-_ LU .-...-.-' e 'd’;-'. - '4\.~). .‘.A\.‘.‘-.‘.-.'!-‘A.‘.‘ RS
L\\_":\t'h L-A&“'n':\f:\‘_&(k(,‘:_‘.t&'.;‘,,_\__‘,L_A RS ST TV RPN T I I AT s AP W5 Oolf TRl A,
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xl+(l-x2)+x34(l-xa) > 1 (5.14)

and [xl+(l-x2)+x3#(l—x4)]/4 <1l
Since the implication is required to be true, in (5.14) we have
substituted '1' for the variable x which would (in a setting of nested
logical connectives) have been assigned to the entire subformula in
(5.13).
The second constraint in (5.14) is equivalent to x, - x, + x, - X

1 2 3
< 2, which is redundant for 0 < xj < 1, so it can be dropped. 1f (5.9)

4

is used instead of (5.3) to model (5.13), the second constraint in
(5.14) becomes four constraints, specifically: ] ? X 1 2] - Xy 1 2

X3, 1 51 - X, Each of these is redundant, and can be dropped.

Therefore, in this example, due to simplifications both (5.3) and (5.4)
yield the same modelling, i.e. the first constraint in (5.14), called a
"generalized sst covering constraint,” Many of our runs are done via
such constraints, with no difference between (5.3) and (5.4). By using
this modelling, with all propositional letters declared binary, we have
one constraint per implication. In effect, we transform our legic
problem into a generalized set covering problem.

In some other experiments reported below, there will be a
difference between (5.3) and (5.4) formulations.

For example, to model the implication

(AVBV ~C) +D (5.15)

we reduce it to

" \ Y 'h. .\-: "o ’ "..\-‘-‘.. -\.-‘ -. '-'

"

CEL -'_"." PSR : “'--_"_‘-. - T
)"A' n'-"‘ ‘( (‘f\f‘.{\.ﬂ:. .‘.'\.. "-‘.';‘!‘;“:n"..-:' P i, b .A)-'\f‘.-‘.‘n' atat ot Tatas P PRV PR PR WD WK PO SE




2 YT T

I
PRI U RN

N AR R T T S 1

.‘:._'r.\_"_(_T'.:"I_‘_’{Y'-"’{"{‘T_"-,‘ - .'d'._- -

v,
| RSN
LRI

-

144

D R

(~AA~BAC)VD

[
()

x v
L. A s e
* i) o et

»
P
CL A,

TR R p
e e [
DL S A R

(as ~(AVBV~C)is (~A4 A~B AC), which has a nested structure. We

N
\

introduce a binary variable x for the subformula ~A A ~B A C, and the

modelling via (5.3), (5.7) becomes

3x ¢ (l-xl) + (l-xz) + Xy (5.16)

-X + (l-xl) + (l—xz) + x3 < 2
1 > (x*xa)/z

1 € x+ x
4

The modelling via (5.4), (5.9) becomes
x €] - xl (5.17)

‘ -
x 1 x2

In (5.16), the third constraint is redundant and in (5.17) the third and
fourth constraints are redundant. However, even with simplifications, we
obtain different representations.

In general, if what preceeds the implication (i.e. K, in K * Li)

is a conjunction of literals, simplifictions result in the same

.‘-7..bj.'l:.‘:.\:.."....:‘.. ...-‘. - ..'-..' ‘_' '.
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!!I generalized set covering problem for both sharp and nonsharp ﬁ
L.

;in formulations. If disjunctions occur there, even after simplifications, l
.'_I-_:.

t{{- the formulations are different.

m In our experiments, we try runs that included the simplificatiens,

3 some of which are the same (i.e, generalized set covering) for both the
sharp and nonsharp representations, and some of which are different. 1n
addition, in some runs we do not make the simplifications which are
possible and deliberately left redundant constraints in the program,
simply to see what happens when these methods are used "blind."

Furthermore, different codes sre used on different runs. The
initial runs on Martin's code were so fast that we decided to "size up"
our problems, and went to APEX IV when it arrived on the Tech campus in
September 1983. As we shall see, the runs continue to be fast,
regardless of the formulationm,

As we discuss the experiments in what follows, we will specify
what formulations are used, whether or not simplications are made and
what code is used,

We remark that, in the "expert systems" when implications like
K; * L, oceur, typically, Ki is a conjunction of literals and Li is, 1in
fact, a single literal, and it is rare for more than six or seven
literals to occur in one implication. Such simple implications are of
course of the generalized set covering variety. However, more ccmplex

implications can also occur.

Problem Generators. Each clause within both the Satisfiability

and Implication Testing experiments is generated by randomly selecting

. - - -"
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the s literals to appear in the clause. The literals are selected in the
following manner. First, a random number, r, in (0,1.0) is selected,
then, for the first literal of the clause, the interval (0, 1.0) is
divided into % equally-sized intervals. The interval in which r belongs
determines the first letter of the clause. To determine the next letter
a new r is generated and the interval is now divided into (%1)
intervals, insuring that any one letter is never selected twice in the
same clause. Once the clause consists of s literals, we determine
whether each will appear as a letter, or the negation (~ Ai) of the

letter, with equal probability.

For the Satisfiability tests, the first occurrence of any literal

is randomly determined to be either a letter or its negation, each having
equal probability of occurring. After the first occurrence, each
subsequent occurrence is the opposite of the preceding logical type

(i.e., if the first occurrence of Al is as Al, the next is ~Al, the next

Al). The selection technique is used to artificially make the problems
difficult.

Once "c" independent clauses of the Satisfiability test are
identified, each literal is scanned to determine the number of times it
occurs, Any literal that appears only once, in one clause, is eliminated
along with the entire clause. The scanning routine continues eliminating
literals and clauses until each literal of the formula appears, as either
a true literal or its negation, in at least two separate clauses. This
last "pruning" step is to make the problems harder for humans to sclve.

After all, a letter which appears in only one clause can easily be given
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a truth value to make that clause true, thus simplifying the problem. We
note, however, that we had earlier done some trial runs without pruning,
and this option (used below) does not seem to make any difference to

machine solution.

F";j . The Implication Testing experiment utilizes a different problem
generator. The individual clauses (Ki, and Li) are generated randomly as
in the Satisfiability experiment. However, whether a literal occurs as a
true literal or its negation is randomly determined for each occurrence.
Each implication consists of "A" clauses on the left (Ki) and "V'" clauses
on the right (Li). (e.g. (Al A A2) + (Al V A3).

Given the total number of literals present in the generated
Implications problem, we fix a certain percentage of these letters to be

either true or false. Then we test whether the overall system of

implications and settings are consistent. However, to increase problem !
difficulty we require that at least one literal per implication be free

(i.e. not fixed). In some tests we increase the number of free

variables per implication to three.

Results

Satisfiability Experiment. The most significant result of our

satisfiability experiments is the ease of their solution as mixed-integer
programs. Tables 17 and 18 summarize our experiences using the BANDBX
and Land-Powell's code, respectively. The actual problem sizes ranges
from 114 constraints, 110 variables, 38 binary for the nonsharp modelling
of Table 18, to 315 constraints, 132 variables 43 of which are binary in

the ninth problem of Table 17. Problems sizes vary with the total number
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of literal negations present, but for an approximate size use the

following formulas.

Constraints Variables Binary
Sharp 4 + L 2L + C L
NonSharp 2C + L 2L + C L

Aside from being extremely easy, even after our attempts to
"harden" the problems, notice the sharp modellings are slower than the
nonsharp modellings in nearly all instances. This is to be expected when
the sharp formulation in this case is not better than the nonsharp
formulation and yet has more constraints (recall that problems of this
type are simply generalized set covering problems). The sharp modelling
appears to perform worse than the nonsharp modelling as the number of
literals per clause increases (Table 17). On the other hand, an increase
in the number of clauses appears to affect the nonsharp modelling

slightly more than the sharp (Table 18).
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I Table 17. Satisfiability Tests Using BANDBX. |

o

'::: Time (CPU Seconds)

- Problem Total Nodes Sharp Non Sharp

l Size satisfiable?|Sharp[Non Sharp|LP Total |LP Total

= L=31,C=44,5=2] Mo 2 2 9.9  11.8 | 4.0 6.5

. L=35,C=45,8=2 No 3 3 12.8 21.5 { 4.7 9.8

A

!I‘_ L=37,C=45,5~2 Yes 1 A 8.7 8.8 | 4.7 10.8

Eg' L=36,C=52,5=2 No 3 3 16.0 27.0 | 6.0 14.4

oA

ool L=46,C=63,5=2 No 2 3 25.7 29.8 | 8.7 21.3

W,

ll 1=53,C=68,5=2 Yes Too 3 model too large| 10.1 21.5

: Large

L=36,C=39,5=3 Yes 3 1 10.1 13.4 | 3.9 4.1
L=38,C=45,5=3 Yes 3 2 18.1 29.6 | 5.5 6.5
L=43,C=45,5=4 Yes 2 1 14.6 16.6 | 5.2 5.4
L=40,C=45,5%4 Yes 2 2 34.4 36.6 | 5.3 7.0
L=25,C=35,5=5 Yes 1 1 173.6  173.5 | 3.5 3.6
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S Table 18. Satisfiability Tests using Land-Powell's Code.

|

e |

f‘.':::: Time (CPU Seconds) “

RN Problem Total Nodes Sharp Non Sharp |

AR Size Satisfiable?|Sharp|Non Sharp|LP Total |LP Total ‘

n L=38,C=40,8=2 Yes 2 1 8.4 9.7 | 3.4 3.5

e L=42,C=40,5=2|  Yes 1 1 7.1 7.3 | 3.6 3.7

: L=44 ,C=45,5%2 Yes 2 2 9.7 12.6 | 4.8 6.5 |
L=45,C=45,5=2 Yes 2 5 9.1 11.0 | 4.7 13.0 l
L=44,C=52,8=2 Yes 1 1 12.5 12.6 | 5.5 5.6 \]
L=43,C=55,8=3 No 2 3 14.7 17.1 6.3 13.7 |
L=45,C=60,5=3 No 2 3 19.3 22.0 | 7.6 13.4
L=45,C=60,S=4 No 2 3 17.7 23.9 | 7.3 15.5
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Implications Testing Experiment. This experiment is performed

entirely using CDC's APEX IV mixed-integer programming code, and as in
the Satisfiability experiments, the branch-and-bound code, with few
exceptions, solves these problems easily. The implications studied here
are of the generalized set-covering type. 1In Tables 19 - 24 we do not
apply our rule of having at least nne free literal per implication, and
the results show these random problems to be very easy. Recall that each
implication requires only one generalized set covering constraint.
Therefore the number of constraints in these problems equals the number
of implications plus one constraint for each literal fixed at either true
(=]) or false (=0).

Since we do not keep track of how many letters in a given clause
are free (not fixed), it is possible that all letters (or all but one) in
many clauses are fixed. Such problems tend to be very easy for humans to

solve by a scanning procedure similar to our "pruning." Therefore in the

next experiment we insure that the letters left free provided instances
of NP-hard problems.

Table 20 summarizes problems in which there are five literals 1in
each Ki and 2 in each Li’ an example is (Al A ~A3 A A4 A A5) + (A2 V A3).
Each implication must have at least three literals not assigned an
initial value. This requirement greatly restricts the literals which we
are able to assign as true or false. In the seventh example we are able
to initialize only eleven of the fifty literals. 1In the “Total Fixed"

column we indicate that each problem instance is solved twice. First the
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s Table 19. Implications Testing Using APEX 1V.

!l No Free Variables Required.

a.I

o

t-:., Problem Parameters

‘ Literals/ Time

- Total # of Clause Total |Consistent |Nodes| APEX Units

XS Implications Literals| K L [Fixed ? Total |LP Total

S

o 300 295 31 60 | Yes 1 7.8 8.2
300 250 3 2 25 Yes 1 2.2 2.6
100 100 3 1 10 Yes i 0.9 1.2
300 200 3 1 20 Yes 1 2.2 2,7
300 294 3 1 30 Yes 1 2.2 2.7
200 198 k) 1 20 Yes 1 1.7 2.2
300 299 3 1 90 Yes 1 10.7 10.9
300 300 3 1 120 Yes 1 14.2 14.6
300 293 3 1 2 Yes 1 2.5 2.9
300 293 3 1 150 No 1 INFEAS 4.0
300 293 3 1 120 Yes )| 3.7 4.0
300 298 3 1 120 Yes 1 3.0 3.3
300 292 3 1 150 No 1 INFEAS 3.3
300 298 3 1 150 No )| INFEAS 4.6
300 298 3 1 150 No 1 INFEAS 17.7

..........
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o Table 20. Implication Tests Using APEX 1V,
n 3 Free Literals per Implication
tj:: Problem Parameters
) Literals/ Time
Total # of Clause Total Consistent [Nodes APEX Units
Implications Literals| K L |Fixed ? Total| LP  Total
300 160 5 2 |58 to 1¥** Yes 1 1.4 1.8
58 to O++ Yes 1 6.0 6.4
300 120 5 2 (38 ¢to 1l Yes 1 1.0 1.4
38 to 0 Yes 2 5.1 5.9
300 100 5 2 34 tod Yes 1 1.3 1.7
3% to O Yes 1 4.2 4.6
400 100 5 2 [29 to ] Yes 1 0.9 1.3
29 to O Yes 1 4.4 4.8
400 60 5 2 {13 tol Yes 1 1.1 1.4
13 to O Yes 1 2.6 2.9
500 60 5 2 {14 tol Yes 2 1.8 2.9
14 to O Yes 3 32.5 47.5
500 50 5 2 (11 to 1l Yes 1 1.2 1.6
11 to O Yes 2 3.6 4.7
600 60 5 2 14 to ] Yes 5 4.2 35.3
14 to O Yes 1 25.3 25.7

*The APEX 1V code was shut off before reaching a solution.

**This notation "15 to 1" means 15 literals are given as true (=])
and one is given as false (=0).

++This notation "15 to 0" means the same 15 literals which were
previously given as true, one given as false (=0). Otherwise
the problems within each set of lines are identical. 1In this
case, there are actually 59 literals given as false (=0).
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u Table 21. 1Implications Tests, Affects of Fixing Literals,
::.'_:j-: 1 Free Literal per Implication.
o
ﬁ Problem Parameters
e Literals/ Time
) Total # of Clause Total| Consistent|Nodes| APEX Units
) Implications Literalg| K L |Fixed ? TotaliLP Total
N .
o 400 100 2 1 38 No 1 INFEAS 11.3
! 37 No ] INFEAS 10.9
N0 :
oL s 36 No 1 INFEAS 11.8
Gl
';1~{"~
[N A 34 No 1 INFEAS 16.5
M 33 No 1 INFEAS 16.4
E 32 No 1 INFEAS 17.4
31 No 1 INFEAS 24.9
30 No 1 INFEAS 28.1
29 No 1 INFEAS 21.6
A 28 No 1 INFEAS 22.5
s 26 No 1 INFEAS 32.5
24 No 1 INFEAS 31.5
22 No 1 INFEAS 45.0
20 No 1 INFEAS 40.9
A 18 No 1 INFFAS 71.0
B le No 1 INFFAS 62.4
0 14 No 1 INFEAS 84,1
v 12 No 13 88.7 266.8
E 10 No 16 17.0 299.8
8 Yes 13 15.6 170.2
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problem is solved with the literals assigned to be true, then the
identical problem is solved with the same literals assigned tc be fal!se
(=0). Since our random generator provides true and negaticn instances cf
each literal with equal probability, whether a literal 1s acciz e a tr.e
or false value should not create more difficult prcblems. H-wever, we
find that when literals are assigned false (=0) values, t-e T e ate
more difficult to solve using the APEX 1V code. Despite tr..
unexplainable phenomenon, the most prominent feature cf trese re Coae
their ease of solution. Again, what is easy or hard fcr * .~s < we &
easy for machine solution.

In table 21 we solve only one problem instance, but var. tre t.ta
number of literals assigned & true value. Each 1mplicaticn ccrsists
enly two literals in each K, clause, and each L, 15 a singletcn clause.
The problem becomes more difficult as it approaches the feasible
infeasible boundaries. In fact, we believe that some of the hardest
problems are at this boundary, and in these tests we are trying tc create
a hard problem. Only the last three instances found the LP relaxaticon
feasible, and these three instances are much harder than the more
infeasible instances. The last entry actually found a feasible soluticn,
and its solution time is much faster than the infeasible example just
above it,

Using ideas from our experiment in connection with Table 21,
Tables 22 and 23 depict problems with fewer literals initially fixed.
These problems are difficult, one instance requires over 2000 APEX units

of time. (Recall, APEX units are virtually equal to cpu seconds.)
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Table 22. Implication Tests Using APEX 1V,
1 Free Literal per Implication.
Problem Parameters
Literals/ Time
Total # of Clause Total Consistent |Nodes |APEX Units

Implications Literals| K L |Fixed ? Total | LP Total
400 100 2 1 {15 to 1#* No 3 46.4 71.8
400 100 2 1 {15 to 1 No 1 INFEAS 63.2
15 to O++ No 7 135.2 193.9
400 100 2 1 |]15to 1l No 21 77.7 237.6
15 to O Yes 3 139.8 173.4
400 100 2 1 {10 to 1 No 1 INFEAS 100.0
10 to O No 1 INFEAS 147.7
400 100 2 1 {10 to ] No 1 INFEAS 84.7
10 to O No 243 109.3 2083.5

400 100 2 1 5 tol Unknown 201% 74.4 557*
400 100 2 1 5 to 1} Unknown 481% 66.9 634%
400 100 2 1 1l tol Unknown 408> 44.0 716%

*The APEX 1V code was shut off before reaching a solution.
**(gee Table 20)

++(gee Table 20)

.......



ot et TF TV W IPLY aPL et R Lo v s ST e x _T_-A'-'\'-f_'s I S T L
j:w;.'rr\r"' e W R T T S W S TS T T e e It AL At IR A Kl
@, 157
;5 Table 23. 1Implications Tests Using APEX 1V
' 1 Free Literal per Implication.
:: Aﬂ‘_ Problem Parameters
L Literals/ Time
ii Total # of Clause Total Consistent |Nedes| APEX Units
Implications Literals| K L [|Fixed ? Total|LP Total
300 100 2 1 |1to1l] Yes 67 |27.9 261.9
;é 1 to O Yes 8 |21.2 53.0
.
e 300 100 2 1 1tol Yes 32 ]25.7 184.2
A _ l1toO Yes 13 |47.6 131.0
b
s 300 100 2 1 | 1tol] VYes 14 [11.0 59.6
e l1toO Yes 16 [13.8 92.9
| 300 100 2 1 |15¢t0 1] vYes 12 |15.9 51.3
15 to O No 3 168.6 81.8
300 100 2 I {15 to 1 Yes 21 |15.0 107.6
15 te O Ne 1 INFEAS 69.4
300 100 2 1 (15 to 1 Yes 8 }19.i 61.3
15 te O Yes 25 159.2 161.7
300 100 2 1 J15 to 1 No 13 135.7 92.5
15 to O No 83 J64.6 431.0
300 100 2 } 15 to 1 Yes 7 ]38.6 80.1
15 to O Yes 49 4404 262.0
300 100 2 1 Ji15tol Yes 19 117.8 82.4
15 to 0 Yes 6 139.0 57.4
300 100 2 1 |15 to ) No 2 129.7 35.6
15 te O Yes 5 }50.4 69.4
300 100 2 1 |15 to 1 No 36 ]27.5 192.5
15 to O Yes 88 193.8 570.9
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Table 24. Implications Tests, Probability of Negations = 0.3,
1 Free Literal per Implication.
:-',::;j Problem Parameters
- Literals/ Time
m Total # of Clause Total Consistent{Nodes| APEX Units
e Implications Literals| K L |Fixed ? Total|LP Total
f\{n
o 300 100 2 1 |15¢to 1| VYes 10 | 28.9 64.6
sl 15 to O Yes 1 60.0 91.8
b
300 100 2 | 15 to 1 No 1 INFEAS 60.3
15 to O Yes 10 68.6 102.6
300 100 2 1 15 to 1 Yes 4 40.3 61.0
15 to O Yes 14 79.2 123.3 |
300 100 2 1 15 to |} Yes 23 20.6 126.7 \
15 to 0] No 3 | 79.0 88.7 \‘
300 100 2 1 [15¢to 1] No 1 | INFEAS 33.8 (
15 to O Yes 12 64.0 127.2 \
300 100 2 1 15 to 1 Yes 28 36.9 177.0
15 to O Yes 16 104.9 164.8
e
o
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n In this manner, we succeed in producing problems which are hard to
solve, apparently by being at the feasible/infeasible boundary. What
seems hardest for the machine is when the LP is feasible, but barely,
while the IP is infeasible. However, since these problems insure only
one free letter per rule, they may have been easier for humans.

Again making literals false produces much more difficult problems,
although in many cases these problems require much fewer branch-and-bound
nodes. As a first attempt to explain why setting literals to false
results in more difficult problems, we alter our problem generator in
favor of generating true literals. 1In Table 24 the probability of a
literal appearing as a negation is reduced to 0.3. For these problems we

expect setting literals to be true to be even faster than before.

Unfortunately that does not appear to be the case as 2 of the 6 problems

actually solve faster when literals are forced to be false.

Table 25, 26, and 27 summarize the results of implications tests
in which disjunctions occur in the clause preceding the implication.
(i.e., for K, * L, both K, and L, are disjunctions of literals.) This
test and corresponding integer model is outlined by formulae (5-15) to
(5-17). We shall name model (5-16) as the STANDARD model, and model
(5-17) as the SHARP model. For these tests we alter the problem
generator such that each occurrence of a particular letter is exactly the
opposite (True or False) of its previous occurrence. Thus, these
problems instances are constructed to be difficult problems.

As (5-16) shows, the STANDARD model requires three constraints and

one additional variable per implication. From (5-17), we see that the
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SHARP model requires (S¢]1) constraints and an additional variable per

E?t: implication, where S is defired as the number of letters appearing in the
EfS: K, disjunction. Based upon well-known results concerning constraint

AN

.I‘ disaggregation, (see [19), [31), [47]), and our own previous experiments,
giﬁ_ ' we expect the SHARP formulation to outperform the STANDARD modelling

gaéi despite its larger size. Our results support our expectation.

b - Tables 25 and 26 depict identical implication problems except in
kgﬁg : Table 25 the known letters are given to be true (set to 1) whereas in

Table 26, the same letters are given as false (set to 0). The size of
the implication problems of these tables result in modellings consisting
of between 300 to 700 constraints and approximately 270-350 binary
variables. Some problems involve a singleton on the right of the
impliction (Liis a singleton) and others have a disjunction of two
letters. Notice that in both (5-16) and (5-17) only one constraint is
affected by adding disjunctions on the right of an implication.

For all problems in Table 25, the SHARP modelling overcomes its
larger size and solves each instance faster and with fewer nodes. In one
instance, (the third sample), the SHARP model finds the LP infeasible

while the lack of sharpness allows the STANDARD to solve the LP and

branch to 11 nodes before reaching the same conclusion. The node counts

AN

0
Ly )

indicate at least a 4 to ] reduction in favor of the SHARP model. For

these samples, the SHARP LP is solved faster than the smaller, however
more dense, STANDARD LP in 4 of the 9 instances.
Table 26 again indicates that setting the given variables te zerc

seems more difficult to APEX IV than setting the same variables to one.
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Aside from that, the SHARP modelling is again faster and requires at
most one-third the number of Branch-and-Bound nodes. For harder problems
(see instances 5, 6, 9) the SHARP model displays at least a 15 to ]
advantage concerning node counts and in problem 6, the node comparison is
at least 40 to ). The actual time comparisons are unavailable as the
STANDARD model fails to solve the instances after 5 minutes of cpu time,
and still cannot solve problem 6 after one hour of cpu time (APEX

units)!

In two inconsistent problems, the inconsistency is discovered with
the SHARP LP, whereas the STANDARD modelling requires up to 82 branch-
and-bound nodes before declaring one of them infeasible.

Table 27 summarizes problems with disjunctions of five letters on
the LHS of each implication. Therefore each implication requires 6
constraints in the SHARP (5-17) modelling, and only three for the
STANDARD (5-16) modelling. Even though the SHARP models now have twice
the constraints, and their corresponding LP relaxations take longer to
solve, they easily outperform the STANDARD formulation. The node count
comparison reaches 70 to ] in one instance and the total enumeraticn time
advantage of the SHARP modelling increases as the problems become mcre
difficult,

Summary

In general, both the SHARP and STANDARD models solve these logic
problems very efficiently, and in most cases, very quickly. We do find
an advantage of the SHARP modelling for implication/production rule
problems in which disjunctions of letters occur before the implication

(Ki of Ki * Li)' This supports both ours and earlier efforts involving
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! constraint disaggregation. However our model comes sutomatically whereas
- previous disaggregations involve problem preprocessing., (see [3]])

- We are able to generate more difficult problems by exploring the
.v feasible/infeasible boundaries. Whether these intentiona!l efforts to

e create difficult problems is more or less realistic requires empirical

o work with actual expert systems. The results clearly indicate that these
2 logic problems are very efficiently solved as math programs, especially
considering that the mixed-integer branch-and-bound codes empioyed are

not specialized binary variables codes, but general mixed-integer codes.
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